Cell Division Research Discovers Sugar 'Safety Switch' | The Institute for Creation Research
Cell Division Research Discovers Sugar 'Safety Switch'

At a very basic level, the maintenance and reproduction of a living organism depend on the division of its cells. How does a cell “know” when or why to begin the division process, or even how to go about it? Research has revealed that the answers are complicated, and a recent breakthrough may add even more questions.

Under a microscope, cell division looks like a straightforward biological process. One cell seemingly just splits into two. But there is actually much more to it. After all, the two new resulting cells have to have all the needed parts that the original had―a copy of every DNA, protein, RNA, and other molecules―as well as at least one whole organelle for each.

How does the communication and transportation of these thousands of parts occur with such integrity and regularity in living things? In a report published in the journal Science Signaling, researchers from Johns Hopkins University School of Medicine and the University of Virginia have confirmed that not only are proteins and phosphates involved in the cell division’s internal communication, but so are certain sugars. Since most cellular investigative techniques rely on molecular characteristics such as size and charge, sugars—which are small and often have no charge—have been difficult to study.

By clever sleuthing, these biochemists discovered that a certain sugar can block a common chemical reaction involving phosphates and proteins. Only when the sugar is removed from the vicinity can the reaction take place, and only then does the protein activate to perform its function in cell division.

The reaction that occurs when an enzyme adds a phosphate to a protein is called “phosphorylation.” A separate enzyme can add the sugar, called “O-GlcNAc,” to the same or a nearby site on that protein, and this prevents the phosphate from being added there. Study co-author Gerald Hart said in a Johns Hopkins press release, “I think of phosphorylation as a micro-switch that regulates the circuitry of cell division, and O-GlcNAcylation as the safety switch that regulates the microswitches.”1

Further, these sugars act not as “on-off” switches, but rather more like “dimmer” switches. This way, the protein activity that coordinates, latches onto, and transports parts within the cell can be constantly fine-tuned during cell division.

It seems that just when scientists and educators think they have grasped how cells operate, they discover a whole new dimension that must be taken into account. The John Hopkins press release concluded that “the new sugar switches reveal that the cellular circuitry is much more complex than previously thought.”1

Considering the engineering required for the myriad cell parts, communication networks, and regulating switches that have been operating faithfully and continuously since the beginning of creation, only a supernatural Builder could be responsible for their existence. With each new dimension of interdependent components, the specified complexity operating in cells requires a renewed appreciation for the ingenuity of their Creator.

References

  1. Sweet!―Sugar Plays Key Role in Cell Division. Johns Hopkins Medicine press release, February 5, 2010, reporting research in Wang, Z., et al. 2010. Extensive Crosstalk Between O-GlycNAcylation and Phosphorylation Regulates Cytokinesis. Science Signaling. 3 (104): ra2.

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on February 18, 2010.

The Latest
NEWS
Designed Deep-sea Vertebrates
Creationists marvel that God has designed creatures both small and big to inhabit a variety of punishing habitats. These examples include the bacteria...

CREATION.LIVE PODCAST
Beauty for Beauty's Sake! | Creation.Live Podcast: Episode 17
Beauty is in the eye of the beholder, right? Or is beauty an objective standard? Where do our ideas of beauty even come from?   Hosts...

NEWS
Fire Sensory Capabilities of the Venus Flytrap
Fascinating discoveries have been made regarding the amazing Venus flytrap (Dionaea muscipula).1 For example, all parts of this amazing plant...

CREATION PODCAST
What Really Swallowed Jonah? | The Creation Podcast: Episode...
The book of Jonah contains the historical account of the prophet Jonah. In verse 17 of chapter 1, the text states that the Lord prepared a great...

NEWS
More Flood Evidence
Paleontologists recently discovered the partial fossils of two new species of dinosaur just outside of Casablanca. As stated in a Science Direct article,...

NEWS
New York Times Editorial: Big Bang Unraveling?
Two physicists have suggested in a recent New York Times guest editorial that Big Bang cosmology ‘may be starting to unravel.’1...

NEWS
Your Functional ''Yolk Sac''
For decades, evolutionists pointed to dozens of ‘useless artifacts’ of the human body to make their questionable case for evolution. But...

NEWS
The Beauty of Creation: Created for God’s Own Glory
Have you ever wondered why a sunset on a beach is captivating, snowcapped mountains are breathtaking, and a valley filled with wildflowers is enchanting? Scripture,...

CREATION PODCAST
Devastating, Dangerous, and Deadly Bacteria? | The Creation Podcast:...
Bacteria are everywhere! While we can't see them with the naked eye, these little critters are everywhere, even in and on your body! Some of...

NEWS
Pre-Flood Reptile Fossil Discovered With Baleen
Baleen whales (suborder Mysticeti) are amazing filter-feeding mammals of the sea. They belong to a group called the Cetacea. Evolutionists suggest they...