Multipurpose Plant Sensors Startle Scientists | The Institute for Creation Research

Multipurpose Plant Sensors Startle Scientists

Plants’ amazing sensor systems enable them to adapt in response to multiple environmental cues. Since plants can’t get up and move around, they have to grow, develop, and thrive where they are.

One of the key factors in a plant’s life cycle is processing sunlight in the form of duration (day length), light quality (wavelength), and light intensity. All of these interconnected light-related factors are monitored within the plant’s leaf cells by a family of sensor proteins called phytochromes.1 When the red to far-red region of the visible light spectrum changes during the day, or because of shade from neighboring plants, the conformation (3-D shape) of the phytochrome proteins becomes altered and they act like genetic switches. They turn on and off a whole host of genes that modify plant metabolism, physiology, growth, and development. Phytochromes also help set the plant’s circadian rhythm (day/night clock)in addition to telling the plant what time of year it is, when it should flower and make seeds, or go dormant for the winter.

Scientists have studied the roles of plant phytochrome sensors in relation to light regulation since the 1960s, but they’ve been baffled about how plants sense and regulate responses to temperature. In addition to light, temperature is a primary environmental variable that must be properly monitored and responded to for healthy plant growth, development, and physiology. The main problem in the scientific discovery process in isolating a temperature detector was that scientists never envisioned that a sensor such as a phytochrome could do anything but detect and respond to light—an already incredibly complex feat.

Now, through a series of serendipitous discoveries while studying plants with phytochrome mutants under different temperature regimes, researchers have unexpectedly uncovered an amazing example of complex engineered systems far beyond human reasoning and ingenuity.2,3 Not only are phytochromes able to detect different wavelengths of red to far-red light and then directly alter gene expression and a myriad of plant processes, they can sense and respond to temperature as well! This temperature-sensing capacity and seamless integration with the light sensory function is so finely tuned that it enables the plant to make a wide variety of adjustments in growth and development both during the night and during photosynthesis in daylight.

Evolutionary scientists did not predict such elaborate sensory integration in a single protein system. Such an amazing piece of engineering is way beyond human capability and speaks clearly that life was engineered by an omnipotent Creator.

References

  1. Xu, X. et al. 2016. Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends in Plant Science. 20 (10): 641–650.
  2. Legris, M. et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science. DOI: 10.1126/science.aaf5656.
  3. Jung, J.-H. et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science. DOI: 10.1126/science.aaf6005.

* Dr. Tomkins is Director of Life Sciences at the Institute for Creation Research and earned his Ph.D. in genetics from Clemson University.

Cite this article: Jeffrey P. Tomkins, Ph.D. 2017. Multipurpose Plant Sensors Startle Scientists. Acts & Facts. 46 (1).

The Latest
NEWS
Aerial Engineering and Physics of the Dragonfly
Dragonflies (order Odonata) are perhaps one of the most studied and appreciated insects in the world today. Like the hummingbird, the dragonfly is a master...

NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...