Design Principles Confer Optimal Light Harvesting in Plants | The Institute for Creation Research

Design Principles Confer Optimal Light Harvesting in Plants
Photosynthesis in plants starts with the absorption of light energy from sunlight, but scientists have been baffled as to how plants utilize the noisy solar spectrum to power the photosynthetic process. By applying engineering principles used to construct wireless antennae reception and energy transfer in human-designed systems, scientists uncovered an ingenious system of design for light harvesting in plants.1

Photosynthesis is a highly complex process in plants that produces carbohydrates from water, carbon dioxide, and sunlight using a light-to-electron energy conversion process that operates at near-perfect levels of quantum efficiency. The light energy harvesting process to fuel this amazing system starts with the absorption of sunlight. In the machinery of the plant cell, the light-based energy is rapidly transferred from a specialized antenna network to a reaction center, where a charge transfer process converts photon-based light energy into electrochemical energy.

One of the primary engineering design challenges for such a system is that light occurs in a broad spectrum of wavelengths and must interact with rapidly fluctuating molecular structures in the plant cell along with highly intricate energy transfer pathways. This produces a delicate interplay of physics-based quantum effects with many complex design hurdles. In other words, sunlight would be considered an exceptionally noisy energy input that must be accurately and precisely filtered or system failure would be inevitable.

In this new study, scientists cast their unproductive evolutionary mindsets aside and borrowed ideas from human engineering of complex networks, a field of study that seeks to develop efficient operations in cellphone networks and the power grid.1 Their design-based model applied to photosynthesis revealed an efficient cellular system that is able to extract and input light of two different color spectra, yet output a consistently steady rate of solar power. This highly unusual (to human minds) choice of two distinct spectral inputs has remarkable consequences towards the efficiency of photosynthesis.

Nathaniel M. Gabor, a physicist from the University of California, Riverside, was the lead investigator on the project and said,

Our model shows that by absorbing only very specific colors of light, photosynthetic organisms may automatically protect themselves against sudden changes—or 'noise'—in solar energy, resulting in remarkably efficient power conversion.2

Noting the efficiency and elegance of the photosynthetic design plan, Gabor’s thoughts immediately turned to exploiting the discovery for man-made applications and said, "Our study shows how, by choosing where you absorb solar energy in relation to the incident solar spectrum, you can minimize the noise on the output—information that can be used to enhance the performance of solar cells."

This new study not only highlights the amazing engineering of God’s creative handiwork, but also shows how abandoning the failed assumptions of evolutionary myth where somehow complex systems evolve by random processes for a design-based approach to studying life is incredibly fruitful for research.

References
1. Arp, T. B. et al. 2020. Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. Science. 368 (6498).
2. Pittalwala, I. Why Are Plants Green? ScienceDaily. Posted on sciencedaily.com June 25, 2020, accessed June 30, 2020.

*Dr. Tomkins is Director of Research at the Institute for Creation Research and earned his doctorate in genetics from Clemson University.
The Latest
NEWS
February 2026 ICR Wallpaper
"Be strong and of good courage, do not fear nor be afraid of them; for the LORD you God, He is the One who goes with you. He will not leave you...

NEWS
Microgravity's Effect on Bacteriophages Is Not Evolution
The word evolution is often used imprecisely, leading the public to believe that any biological change is evolution, and, therefore, it’s a fact.1...

NEWS
Engineered for Extremes: The Hidden Precision of a Salt Lake...
Water that is nearly five times saltier than the ocean is deadly to most animals. But in Utah’s Great Salt Lake, scientists have found a tiny...

CREATION PODCAST
Giant Sequoias: Too Complex to Be Accidental | The Creation Podcast:...
What living thing grows taller than a 25-story building, survives raging wildfires, and actually depends on those fires to reproduce? Giant sequoias...

NEWS
Bound by Design: How a Universal Temperature Law Reveals Life’s...
What if every living creature—from coral reefs and cold-water fish to mountain flowers and desert reptiles—followed the same hidden temperature...

NEWS
The Flood Explains 18,000 Dinosaur Tracks in Bolivia
A new discovery of 18,000 individual dinosaur tracks in the Bolivian El Molino Formation contains the highest number of theropod dinosaur tracks in...

NEWS
Prolonged 40-Year Growth in T. Rex: Evidence for Pre-Flood Longevity?
An open access 2026 PeerJ research paper claims that T. rex took 40 years to reach its full adult body size, in contrast to a much shorter previous...

NEWS
Recent Discovery of a Strange Microbe Gives No Clues to Evolution
Research into God’s living creation is dynamic and always surprising. This is true whether one peers into the deepest reaches of space or dives...

NEWS
Built to Adapt: What Microbial Flexibility Reveals about Biological...
Imagine a machine that keeps working even when its parts change slightly or its surroundings shift. Most human-made machines would fail under that kind...

CREATION PODCAST
Scientists Ignored This DNA Pattern for DECADES! | The Creation...
Almost every living organism has tiny stretches of DNA that repeat over and over again. Scientists call these tandem repeats, and for a long time they...