Scientists Discover New Molecular Motor 'Clutch' | The Institute for Creation Research

Scientists Discover New Molecular Motor 'Clutch'

How would a vehicle slow or stop on time or on target without some mechanism to disengage the engine from the drive train?

The vehicles that transport items within living cells face the same challenges as vehicles that transport people and goods. One molecular vehicle inside cells uses a protein motor called dynein. And researchers just discovered that a detachable clutch-like protein regulates its speed.1

The dynein motor walks along microtubules, which are like train tracks inside cells. One end of the two-motor complex, which is a complex of 12 separately manufactured protein parts, has a long stem that acts like a trailer hitch attachable to a cargo bundle. At the other end, a short stalk connects to a pair of molecular leg-like appendages that alternately attach and detach as they literally walk down the length of a microtubule. This way, a cell transports products from one area to another. But what if there was no way to control how fast the dynein walked?

Without a clutch-like mechanism to regulate its speed, a cellular motor would carry its cargo too fast and too far, requiring constant cargo re-routing. Too much of such confusion would disrupt the cell's finely tuned and highly efficient inner workings. In short, failure to regulate the speed of protein motors could cause fatal intracellular traffic jams.

Fortunately, dynein motors are modulated by what researchers called a "clutch." A separate protein named "Lis1" attaches right where the appendages connect to the dynein's central motor. When the researchers added Lis1 to fully fueled dynein motors, they watched the dynein walking action slow down dramatically.2 The study authors reasoned that Lis1disrupts the connection between dynein motors and their walking appendages, much like a clutch disengages an automobile engine from the transmission.

The specified complexity of Lis1, which is exactly the right size, shape, strength, and charge to fit perfectly into its notch on the dynein complex and fulfill its purpose, is one of thousands of essential details that the Creator provided for living cells.

References

  1. Huang, J. et al. Lis1 Acts as a "Clutch" between the ATPase and Microtubule-Binding Domains of the Dynein Motor. Cell. 150 (5): 975-986.
  2. To do this, the researchers chemically bonded molecular markers onto the dynein complexes, so that specialized equipment could visualize the motors in a laboratory setting.

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on October 10, 2012.

The Latest
NEWS
Fossil Chromatin Looks Young
What are the odds that a buried animal would still have intact DNA after 125 million years? Researchers publishing in the journal Communications Biology...

NEWS
Inside October 2021 Acts & Facts
How is the Lord’s handiwork on display at John Pennekamp Coral Reef State Park? Does the universe look old? What can we learn about science and...

NEWS
Two-Volume Series: Restoring the Truth about Origins
The subject of origins continues to attract interest from the public and the scientific establishment. Understanding our origins informs us of who we are...

ACTS & FACTS
Creation Kids: Floods Form Fossils Fast
Christy Hardy and Susan Windsor* You’re never too young to be a creation scientist! Kids, discover fun facts about God’s creation with...

ACTS & FACTS
A Battle for Hearts
Since the ICR Discovery Center for Science & Earth History opened in fall of 2019, tens of thousands of people have walked through our doors. They...

APOLOGETICS
Eating Bugs Isn't Always So Simple
The Lord Jesus Christ deserves glory for why He made Earth’s diverse creatures, and He also deserves glory for the complicated details of how...

ACTS & FACTS
Does the Universe Look Old?
Since distant galaxies are billions of light-years away, some understandably assume that distant starlight must have taken billions of years to reach...

ACTS & FACTS
Hawaii Behind the Scenes
ICR Research Scientist Dr. Brian Thomas and ICR Video Producer Clint Loveness, with help from friends and family, recently shot footage in Maui, Hawaii,...

ACTS & FACTS
Mutation, Design, and Faith
Any alteration in a cell’s DNA sequence is a mutation. These changes can come from copying errors, exposure to chemicals or radiation, or from...

ACTS & FACTS
Another Function of 'Junk DNA' Discovered
For decades, evolutionists suggested that huge sections of our genome (about half) did not actively code for the production of proteins or polypeptides—and...