Soft Tissue Fossils Reveal Incriminating Trends | The Institute for Creation Research
Soft Tissue Fossils Reveal Incriminating Trends

In December 2019, the journal Expert Review of Proteomics published a paper I authored with Stephen Taylor titled “Proteomes of the past: the pursuit of proteins in paleontology.”1 The article features a table that lists 85 technical reports of still-existing biomaterial—mostly proteins—discovered inside fossils.

Can proteins last millions of years? Not according to decay rate measurements. Five incriminating trends emerged from these 85 secular reports. Our review sharpens the tension between how short a time biochemicals last and the supposed age of the fossils that contain them. We wrote:  

Collagen decay rate experimental results build a temporal expectation that restricts bone collagen to archeological time frames, yet many reports of collagen and other proteins in older-than-archeological samples have sprinkled the paleontological literature for decades. Tension between the expectation of lability [susceptibility to chemical breakdown] and observations of longevity has fueled steady debate over the veracity of original biochemistry remnants in fossils.1

 
Image credit: Thomas, B. and S. Taylor. 2019. Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics. 16 (11-12): 881-895.

The 85 reports included descriptions of original skin, connective tissues, flexible and branching blood vessels, bone cells, and probable blood cells. Original biochemistry includes tattered but still-detectable osteocalcin, hemoglobin, elastin, laminin, ovalbumin, PHEX, histone, keratin, chitin, possible DNA, collagen, and collagen sequence—all inside fossil bones.

The first trend we found noted biomaterials from all kinds of different fossilized animals, not just dinosaurs.2 Thus, researchers need not restrict their searches for fossil biomaterials to any specific plant or animal type.

The second trend from all of these reports, which span over a half century of exploration, found no better preservation in one ancient environment over another. Whether living in air, oceans, lakes, swamps, or forests before they were fossilized, fossils could still contain biomaterials.3

Third, a bar graph of the number of relevant publications per year showed an increased interest in this field within the last two decades. Additionally, Figure 5 from our paper plots discoveries onto a world map to show that biomaterials in fossils occur virtually worldwide. We predict that future investigations could discover original biomaterials wherever fossils are found.

The fifth and final trend presents the biggest obstacle for those who insist that rock layers represent vast eons. We found reports of original biomaterials from seven of the 10 standard geologic systems plus one report each from the Precambrian and Ediacaran layers—the bottommost sediments on Earth. As one of our anonymous peer reviewers protested in response to these findings, having biomaterials last over 70 million years—let alone 500 million—is simply fantasy.

Proteins decay relentlessly and relatively fast. Yet protein discoveries keep piling up. Thus, “it is likely that contention will persist.”1 Our secular colleagues now have a sharper look at the vast depth and wide spread of young-looking biomaterials from fossils.

References

  1. Thomas, B. and S. Taylor. 2019. Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics. 16 (11-12): 881-895.
  2. Tissues or biochemistry were reported in dinosaur, eggshell, turtle, bird, marine worm casings, sponge, clam, mosasaur, tree, insect, arachnid, frog, salamander, and crinoid fossils.
  3. “Fossilized” does not necessarily mean “mineralized,” as this list clearly shows. Fossils include remains of once-living things that were totally replaced by minerals, partly replaced by minerals, mineralized only in tiny pore spaces, or not mineralized at all—like natural mummies.

* Dr. Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.

Cite this article: Brian Thomas, Ph.D. 2020. Soft Tissue Fossils Reveal Incriminating Trends. Acts & Facts. 49 (11).

The Latest
CREATION PODCAST
Volcanoes on Mars??? | The Creation Podcast: Episode 58
Geologic activity shows signs of youth not just on our planet, but all throughout the universe. As we discover more about our solar system and the...

NEWS
The Brain’s Amazing Ability of Visual Perception
Scientists will never fully understand the brain’s operation.1,2,3 As neurological research continues, it will only reveal more...

ACTS & FACTS
Continuous Environmental Tracking : An Engineering-Based Model...
Purpose The Institute for Creation Research is engaged in our biggest science initiative in the last two decades, and it could be our most important...

ACTS & FACTS
CET: Testing the Cavefish Model
Staff Writer Purpose The Institute for Creation Research (ICR) is testing an engineering- based model of rapid biological adaptation called...

ACTS & FACTS
Original Biochemistry in Fossils
Purpose In 1997, paleontologist Dr. Mary Schweitzer accidentally stumbled upon what appeared to be blood vessels and blood cells from a T. rex...

ACTS & FACTS
Debunking an Iconic Uniformitarian Ice Age Theory
Purpose The Milankovitch, or astronomical, theory holds that the timing of Ice Ages is controlled by slow changes in Earth’s orbital and...

ACTS & FACTS
ICR and Explaining the Ice Age
by Larry Vardiman, Ph.D., and Michael J. Oard, M.S.* Purpose There is strong geological evidence for an Ice Age, so the Institute for Creation...

ACTS & FACTS
Planetary Magnetism
Purpose In 1971, Dr. Thomas Barnes publicized a then “trade secret” of scientists studying the earth’s magnetic field, which...

ACTS & FACTS
Cosmology Research
Purpose Taking the Hebrew text of Scripture at face value without inserting gaps or revising the meanings, the universe is only about 6,000 years...

ACTS & FACTS
The Coconino Sandstone: Water, not Wind
Purpose The Coconino Sandstone is one of the most well-known formations in Grand Canyon. The blond-colored sandstone, just three layers down from...