A More Accurate Chimpanzee Genome | The Institute for Creation Research

A More Accurate Chimpanzee Genome

Evolutionists claim that genetics has proved humans and chimpanzees are close evolutionary relatives. The current chimpanzee genome, however, was not constructed on its own merits. Instead, the human genome served as a framework for developing it. All of the short DNA sequences produced from the chimpanzee genome were assembled onto the human genome, using it as a reference sequence.1,2 This problematic shortcut was taken due to budget constraints, convenience, and a healthy dose of evolutionary presuppositions that humans evolved from apes.

Another serious potential problem with the chimpanzee genome is human DNA contamination—human sequences inadvertently included with the chimp sequences. That would also help to produce a more human-like chimpanzee genome. In 2011, a very interesting study was published in which the researchers screened 2,749 non-primate public DNA databases from all over the world and found 492 to be contaminated with human sequence—almost 18%.3 These DNA databases represented species ranging from bacteria to plants to fish. Ape and monkey databases were not tested, leaving the question open as to how much human DNA contamination may be present in them.

Given that these problems may very well have led to the development of a chimpanzee genome that appears more human-like than it actually is, ICR has initiated research to assess the quality of chimpanzee DNA sequences. This involves testing for anomalies that would indicate human DNA contamination. DNA sequence datasets that appear to have reduced levels of human DNA contamination will then be used to reassemble the chimpanzee genome in a de novo assembly, meaning that no reference genome will be used.

At present, there are 101 DNA sequence datasets available to the public that were produced using an older technology that yielded much longer chunks of DNA than current technologies, which produce a greater amount of total bulk sequence of much shorter lengths. The longer the length of the DNA sequence, the easier it is to computationally assemble into contiguous genomic regions called contigs. I downloaded all 101 of these datasets and end-trimmed the sequences to remove poor-quality bases and bacterial DNA contamination, since that type of sequencing process utilized a lab strain of the E. coli bacterium.

To ascertain the quality of each chimpanzee end-trimmed dataset, 25,000 DNA sequences were selected at random and queried against the human genome using a new version of the BLASTN algorithm. This not only checked for differences in individual bases but also allowed for small gaps in the compared sequences. When basic statistics were performed on the resulting data, it was clear that a major difference existed between the datasets for overall DNA similarity—a trend that corresponded with the timeframe in which the sequences were produced.

The initial chimpanzee genome publication was drawn from sequences produced early on in the chimpanzee genome project. These sequences were considerably more similar to human than those that were produced later in the project, by an average difference of about 5%. In fact, many datasets exhibited over a 10% difference in similarity. It may be that greater precautions against human DNA contamination were taken later in the project and thus produced less contamination. If the data from these seemingly less-contaminated sets are considered, the chimpanzee genome is no more than 86% identical to the human genome—a number that is in stark disagreement with evolution. We are now actively exploring these promising findings.

References

  1. The Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 437 (7055): 69-87.
  2. Tomkins, J. P. 2011. How Genomes Are Sequenced and Why It Matters: Implications for Studies in Comparative Genomics of Humans and Chimpanzees. Answers Research Journal. 4: 81-88.
  3. Longo, M. S., M. J. O’Neill, and R. J. O’Neill. 2011. Abundant Human DNA Contamination Identified in Non-Primate Genome Databases. PLoS ONE. 6 (2): e16410.

* Dr. Tomkins is Director of Life Sciences at the Institute for Creation Research and received his Ph.D. in genetics from Clemson University.

Cite this article: Jeffrey P. Tomkins, Ph.D. 2016. A More Accurate Chimpanzee Genome. Acts & Facts. 45 (4).

The Latest
NEWS
Ichthyosaur Graveyard Explained by the Flood
Ichthyosaurs are marine reptiles that occur globally in the same rock layers as dinosaurs. Specimens with babies support the idea that they gave live...

CREATION PODCAST
What Do We Do With Geology's Unconforming Features? | The Creation...
Welcome to the fifth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old...

NEWS
Freshwater Fish Fossil in Australia
Yet another fish fossil has been discovered. This one was found in the Australian desert and was dated by evolutionists to be “15 million years...

NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...

ACTS & FACTS
Creation Kids: Crystals!
by Michael Stamp and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

APOLOGETICS
Playing Chess with Little Furry Critters
God’s multifarious and marvelous designs for basic creature needs are so innovatively clever and providentially purposeful that Christ’s...

ACTS & FACTS
Credit Only Our Creator
History was my favorite subject as a young kid. But it always puzzled me when my teachers said, “We study history so that we don’t repeat...

ACTS & FACTS
Genomic Tandem Repeats: Where Repetition Is Purposely Adaptive
Tandem repeats (TRs) are short sequences of DNA repeated over and over again like the DNA letter sequence TACTACTAC, which is a repetition of TAC three...

ACTS & FACTS
Dinosaur National Monument: Fossil Graveyard of the Flood
Straddling the border of Utah and Colorado, Dinosaur National Monument (DNM) is one of the richest exposures of dinosaur fossils in the world.1...