Mending Mistakes - The Amazing Ability of Repair | The Institute for Creation Research
 
Mending Mistakes - The Amazing Ability of Repair

If someone were to ask a creation scientist for evidence of creation, he may very well reply, "The DNA molecule." Everyone has heard of this "molecule of life" found in virtually every cell in our body. DNA is organized into chromosomes (people have 46) upon which many thousands of genes (units of heredity, comprised of nucleotide bases called T, G, C, and A) are found.

The amazing Human Genome Project continues to fine-tune both the mapping of specific genes (we only have about 34,000) and sequencing the enormous DNA "ladder" of base-pairs. The ravages of time and environmental factors such as cigarette smoke and ultraviolet (UV) sunlight — along with other carcinogens and cytotoxic compounds — guarantees our DNA will be damaged. A majority of these changes are momentary however, because the Creator has designed specific molecules and systems to repair the genetic damage. This is what is collectively known as DNA repair. It has been known for some time that DNA possesses the incredible ability to repair itself when damaged. But how did such self-repair come about — time and chance or special creation? It is difficult enough for the secularist to explain a Darwinian step-by-step description of the origin of a functional DNA molecule from raw chemicals. But how did the 130 known DNA repair genes of people evolve that help with... DNA repair? Surely as DNA was evolving from lifeless chemicals, it would need the attention of DNA repair molecules that could only evolve later on — having been programmed by DNA!

God has designed a number of DNA repair systems and proofreaders (enzymes), each to take on different repair problems. For example, there are enzymes involved with mismatch excision repair (MMR) that recognize wrongly paired bases, and nucleotide excision repair (NER), which is a universal "cut and patch" repair mechanism. NER operates to remove the mistake — called a lesion — and fill in the gap with new DNA. One may liken this to a dentist drilling out decay and replacing the hole with a filling (the "filling" in DNA repair is a functional nucleotide). There are also tiny molecular motors (see "Origins Issues," Acts & Facts, April 2004) called helicases (e.g., DnaB helicase and other multimeric motors) that literally unwind DNA from the normal double-stranded state into two single strands. Helicases accomplish this by rapidly breaking hydrogen bonds between the nucleotides (the "ladder rungs" portion of the molecule) in a manner somewhat like the way inchworms move. Other specially designed enzymes must immediately keep the two single strands apart once they are separated. From there, efficient repair of the DNA continues. Occasionally this amazing repair mechanism fails — as all of our systems eventually do — and a permanent alteration or change in that portion of the DNA results. This is called a mutation. Of course, mutations in critical areas can be deadly to an organism.

Here's the point. DNA repair systems work hard to repair changes that daily occur in the billions of nucleotide bases that make up plants, people, and animals. But evolution depends on these very changes (mutations) that supposedly lead to new structures and functions. This will be the subject in a later edition of "Origins Issues."

Cite this article: Sherwin, F. 2004. Mending Mistakes—The Amazing Ability of Repair. Acts & Facts. 33 (6).

The Latest
NEWS
Titan Receding from Saturn Faster than Expected
Data obtained from the Cassini space probe show that Saturn’s largest moon, Titan, is receding away from Saturn a hundred times faster than scientists...

NEWS
Evolutionists Struggle to Explain Canadian-Australian Connection
A new species of a split-footed lacewing was recently unearthed in British Columbia, Canada, creating a bit of controversy among secular paleontologists.1...

NEWS
Surveillance Tracing: Red Pandas in Himalayan Nepal
It’s tough to be a red panda in this fallen world, especially after the global Flood. Conservationists are satellite tracking red pandas in...

NEWS
Maine Lobsters Make International News
The life of a Maine lobster is mostly a matter of crawling around on muddy continental shelf seafloors, not far from a coastline. Benthic scavenging is...

NEWS
Should We Grouse About Not Seeing Grouse?
A recent report in Chesapeake Bay Journal laments the decline in ruffed grouse populations in the Chesapeake watershed region of its natural range. Ruffed...

NEWS
Meet Dr. G: Roller Skating, Evangelism, and a Changed Life
Have you heard the news? ICR’s Board of Trustees recently appointed Dr. Randy Guliuzza to be ICR’s new President & Chief Operating Officer....

NEWS
Honeybees: How Sweet It Is, Again
After some scary population downturns and scarier rumors of bee populations crashing, honeybees are making a comeback, populationally speaking.1,2...

NEWS
Dolphins Learn Tricks from Peers to Catch Fish
Dolphins—like other cetaceans such as whales, wholphins, and porpoises—are highly intelligent marine mammals, capable of astonishing feats....

NEWS
Liberty and the Word of God
“And I will walk at liberty: for I seek thy precepts” (Psalm 119:45). July 4th is called Independence Day here in our country because on...

NEWS
Wandering Albatross: Wide Wings on the Winds
Wandering albatrosses have the largest wingspan of any living bird, so they live much of life soaring above the oceans. With their wings—and a lot...