The Masterful Design of Spider Webs | The Institute for Creation Research

The Masterful Design of Spider Webs

Garden spider webs look amazing, but they also are so strong that they inspire materials scientists. Research recently showed that spider webs actually strengthen after they are slightly damaged. Experiment results demonstrated that too much damage did eventually weaken the webs, but not before they withstood hurricane force winds and multiple breaks. How did spider webs get so well-engineered?

Spider silk is stronger than steel and tougher than Kevlar pound-for-pound, but the overall web that garden spiders weave is even stronger than its silk proteins. In a report published in Nature, researchers wrote, “Spider webs themselves are characterized by a highly organized geometry that optimizes their function.”1 The team tested the behavior both of radial threads and spiral threads in order to discover secrets of web geometry. Like spokes on a bicycle wheel, the radial threads anchor to nearby objects. The spiral threads crisscross and anchor to the radial threads.

This Nature study found that a spider silk strand resists stress in a stepwise fashion. After initially stiffening, the thread absorbed stress by stretching. Additional pressure caused the thread to sharply stiffen, thus transferring pressure to the rest of the web. But even more pressure was handled by a fourth and final process. Crystalline structures within the spider silk protein absorbed the maximum strain and broke, leaving the larger web intact. For example, a struggling insect would not break the whole web, but only those silk strands in contact with the insect. And after a local thread or two broke, the overall web strength increased! The study authors wrote that “the ultimate load capacity increased by 3-10% with the introduction of defects.”1 It’s as though the web was designed to anticipate breaks.

If the entire web broke apart because of stress applied in just one area, then the spider would have to recast a new web each time it broke, creating a monumental workload: “Given the presumed metabolic effort required by the spider for rebuilding an entire web, localized failure is preferential as it does not compromise the structural integrity of the web and hence allows it to continue to function for prey capture in spite of the damage.”1 Because their webs remain stable after damage, spiders simply repair them. The superior engineering in both material and structural layout enables spiders to catch multiple meals with the same web.

Scientists cannot make the raw materials of silk with man-made machinery, but have used genetically modified bacteria and goats to manufacture silk proteins.2 So far, only a spider’s silk glands and spinnerets can assemble the world’s most resilient biodegradable thread. But engineers recognize the benefits of copying the design features of the spider web architecture as well as the webbing strands.

The “engineering design could ignore the requirements for the magnitude of a potential load and allow local failure to occur, a design stipulation that requires the consideration of both material and structural architecture.”1 For example, automobile designers incorporate built-in crumple zones where “local failure” absorbs the force from a head-on collision instead of the driver’s body.

The Nature study authors called spider webs an “optimized” system, meaning that the design could not be improved.1 Did nature optimize spider webs, or did the Creator optimize them? Experiments do not show nature optimizing biological structures. In fact, undirected nature breaks down structures. Of these two origins options, only one is an actual person—an Engineer and more, with real thoughts, who is capable of the consideration required to create spider webs.3

References

  1. Cranford, S.W. et al. 2012. Nonlinear material behaviour of spider silk yields robust webs. Nature. 482 (7383): 72-76.
  2. Xia, X-X et al. 2010. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences. 107 (32): 14059-14063.
  3. “The counsel of the LORD standeth for ever, the thoughts of his heart to all generations” (Psalm 33:11).

Image credit: © Mikhail Kokhanchikov | Dreamstime.com

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Cite this article: Thomas, B. 2012. The Masterful Design of Spider Webs. Acts & Facts. 41 (4): 16.

The Latest
CREATION PODCAST
Water vs. Wind: The Controversial Coconino | The Creation Podcast:...
Welcome to the sixth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old...

NEWS
Fossil Fish Finally Filmed
The bizarre lobe-finned coelacanth (Latimeria chalumnae) “that flourished some 350 million years ago”1 continues to be a thorn...

NEWS
The Mosasaur: A Giant Sea Dragon
Mosasaurs (order Squamata) were massive marine lizards that were common in the pre-Flood oceans. Therefore, it is not surprising that their fossils...

DAYS OF PRAISE DEVOTIONALS
Summer 2025
...

NEWS
Was Life Detected on a Distant Planet?
There was celebration, albeit briefly, for the discovery of potential life on a planet called K2-18b, which is 124 lightyears away from Earth. The...

NEWS
Ichthyosaur Graveyard Explained by the Flood
Ichthyosaurs are marine reptiles that occur globally in the same rock layers as dinosaurs. Specimens with babies support the idea that they gave live...

CREATION PODCAST
What Do We Do With Geology's Unconforming Features? | The Creation...
Welcome to the fifth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old...

NEWS
Freshwater Fish Fossil in Australia
Yet another fish fossil has been discovered. This one was found in the Australian desert and was dated by evolutionists to be “15 million years...

NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...