Hypercanes Following the Genesis Flood

Download PDFDownload Hypercanes Following the Genesis Flood PDF

Presented at the Fifth International Conference on Creationism, Pittsburgh, Pennsylvania, August 4–9, 2003. Published in: Proceedings of the Fifth International Conference on Creationism, R. L. Ivey, Jr. (Ed.), pp. 17–28, 2003.

© 2003 Creation Science Fellowship, Inc., Pittsburgh, PA, USA. Published with permission. All rights reserved.


If the geologic processes of the Genesis Flood were as catastrophic as biblical and scientific evidence suggests, the oceans would have been strongly heated by the release of magma from the mantle and the conversion of geologic work to heat. During and following the Flood, tremendous quantities of heat and water vapor would have been released into the atmosphere from the oceans. Local weather and global climate would have been dramatically altered for many years.

Kerry Emanuel of the Massachusetts Institute of Technology suggests that hurricanes would intensify beyond normally observed intensities today if they existed over unusually warm water for extended periods of time. He calls these hurricanes, which could have horizontal winds exceeding 300 mph, hypercanes. They can be simulated in numerical mesoscale meteorology models when the sea-surface temperature is increased to temperatures warmer than about 30 °C.

This paper will explore the rate of development and intensity to which such hurricanes can reach when sea-surface temperatures are warmer than typically observed today. The amplification of Florence, a weak hurricane which formed in the Gulf of Mexico and moved northward toward New Orleans in 1988, is simulated by artificially setting the sea-surface temperature over a large area of the Gulf to 45°C, about 15°C warmer than the warmest waters in the tropics. The simulated hypercane immediately formed deep convection, dramatically increased its rate of rotation, quadrupled its vertical and horizontal winds, and increased its precipitation rate by a factor of about ten over that of the actual hurricane.

It will be shown that warmer sea-surface temperatures likely during and following the Genesis Flood for many years would have produced hypercanes with great destructive power which could have continued the devastation over continental areas. Extreme precipitation events on the tropical continents for several hundred years after the Flood may have eroded large areas of unconsolidated sediments. In mid-latitude, polar, and high mountainous regions hypercanes probably would have contributed significantly to the accumulation of snow and ice during the “ice age.”

It is recommended that simulations of hypercanes over the open ocean and for cooler sea-surface temperatures be conducted and the size to which they grow be identified. It is further recommended that the impact of heavy precipitation, winds, and storm surges be studied on the erosion of unconsolidated land masses near continental boundaries. Also, the contribution of hypercanes to the formation of ice sheets and glaciers during the ice age should be explored.


Hurricane, Hypercane, Mesoscale Meteorology Model, MM5, Florence, VIS5D, Flood, Gulf of Mexico, Yucatan Peninsula, New Orleans

For Full Text

Please see the Download PDF link above for the entire article.

The Latest
Save the Date for Giving Tuesday 2018!
We’re entering the season of giving, and what better gift to give than the truth of God’s Word. Will you help us reach your family, friends,...

Radio Interview: Why Our Origins Matter
Leading up to ICR’s conference in Boston this weekend, Dr. Randy Guliuzza discusses why what we believe about origins matters to our understanding...

The Only Reasonable Explanation
Hi, my name is Lauren Pennington, and I work in the accounting department here at ICR. Many in our culture today wholeheartedly accept evolution...

Evaluating Evolution
Does what we believe about origins matter? ICR Science Writer and speaker Brian Thomas discusses the evidence that persuaded him to reject evolution...

Cold Slabs Indicate Recent Global Flood
Since the 1990s, cross-section images of mantle tomography have shown visible slabs of oceanic lithosphere (which includes oceanic crust) descending...