Cell Division Defies Evolutionary 'Just-so' Stories | The Institute for Creation Research
Cell Division Defies Evolutionary 'Just-so' Stories

Cell division seems comparatively straightforward when viewed under a microscope. One cell replicates itself and splits into two daughter cells, enabling an organism to develop, grow, and replace cells in its body. But there is no easy way to describe the details of how cells actually achieve this orderly division.

Processes at work inside the cell somehow ensure that enough of every required part makes it into both daughter cells, whether it is a complete set of chromosomes, at least one each of every organelle (in eukaryotic cells), and thousands of required proteins.

How do cells keep all of this straight, and how do they continually repeat the process with such precision? If any division phase occurs too soon or out of order, the cell will fail to survive. The success of the process is crucial for any dividing cell, which includes all cells and therefore all living systems.

Cell division occurs in discrete phases, with specific objectives obtained in each phase. One key question that cell biologists have tackled is: How does the cell "know" when to stop one phase and start the next?

Reporting in the journal Cell, researchers found that a particular enzyme called Cdk operates as a master oscillator, undergoing rhythmic periods of activity.1 Cdk activates a host of subsidiary oscillators, each one in charge of activating a separate but necessary process at a distinct phase of cell division. Moreover, Cdk is influenced by feedback information sent from its subsidiary oscillators.

And this is just one mechanism, tightly linked with many other major cell processes, that ensures cell division is properly regulated. Without Cdk and its associate enzymes comprising what the authors call a "phase-locking model," cell division would not work. And without that, there would be no life on earth.

How did this interactive, micro-miniaturized network of oscillators come about? In a summarized version of the technical report on Cdk, University of California physiologist David Morgan wrote, "The phase-locking model, like everything in biology, makes particularly good sense in the light of evolution."2

He then summarized speculations regarding what supposedly happened early in the evolutionary history of cells:

Early eukaryotes depended on multiple autonomous oscillators, each driving a different event with similar frequency. Cdk arrived later in evolution…eventually assuming control of multiple oscillators to provide more robust centralized control….More effective coordination and timing of events would have become possible with the duplication and specialization of cyclins, together with the evolution of checkpoint controls. Cdks also acquired the ability to directly control hundreds of proteins involved in every aspect of cell division.2

So, with no actual evidence that any of this took place, what is the difference between this "report" and pure fiction?

In an extreme case of shortsightedness, the quote above immediately followed a discussion of how necessary Cdk and its host of oscillators are to the very life of the cell! Morgan described the oscillators as depending "so completely on the Cdk oscillator that they can no longer be uncoupled from it."2 Reports of biochemical systems that cannot evolve backward, but somehow must have evolved forward to reach their present state of existence highlight the blind faith that evolution requires.3

Logically speaking, if a necessary component of any system is broken, then the whole system breaks. But this also means that the required piece—which in this case is the phase-locking oscillator setup—must also have appeared in its entirety and fully integrated at the very start.

Further, the coupling between Cdk and its associate enzymes is so strong that it "underlies the regulatory circuit driving DNA replication."2

By the author's own admission, without these coordinated oscillators to regulate it, DNA replication would not occur. And without DNA replication, cell division would not occur. Without cell division, there would be no reproduction. And without reproduction there can be no evolution, because evolution supposedly operates by survival and reproduction of the fittest.

Thus, this oscillator makes no "sense in the light of evolution." The real light that this proposed evolutionary "just-so" story sheds is on the human heart, revealing that even when confronted with blatant evidence for creation (in the form of ingeniously designed cellular regulatory machinery), some people choose to remain "willingly...ignorant."4

References

  1. Lu, Y. and F. R. Cross. 2010. Periodic Cyclin-Cdk Activity Entrains an Autonomous Cdc14 Release Oscillator. Cell. 141 (2): 268-279.
  2. Morgan, D. O. 2010. The Hidden Rhythms of the Dividing Cell. Cell. 141 (2): 224- 226.
  3. Thomas, B. Irreversible Complexity―Evolution Loses Another Round. ICR News. Posted on icr.org December 16, 2009, accessed September 23, 2010.
  4. 2 Peter 3:5.

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on September 29, 2010.

The Latest
NEWS
Unlocking the Mysteries of Genesis Conference Coming to Lincoln,...
Are you looking for real answers to the tough questions of faith and science? Come to the Unlocking the Mysteries of Genesis Conference on June 26 at Lincoln...

NEWS
Inside June 2021 Acts & Facts
How do the Everglades illustrate Bible-affirming biology? Why do marine sponges inspire engineers? What can we learn about God’s providence from...

NEWS
Two Excuses for Human Evolution Confusion
Public school textbooks assert that apes and humans emerged from an ape-like animal, whereas Genesis 1 says that God created humans and the different animal...

DAYS OF PRAISE DEVOTIONALS
Summer 2021
...

ACTS & FACTS
Creation Kids: Coral Reef
Christy Hardy and Susan Windsor* You’re never too young to be a creation scientist! Kids, discover fun facts about God’s creation with...

ACTS & FACTS
The Legacy and Faith of a Godly Father
Good fathers serve an essential role in the family, and it’s surely fitting that we express our love and gratitude on Father’s Day. After...

APOLOGETICS
Even Seaweed Is Proof of God's Providence
Tidewater-tossed seaweeds display God’s providence.1,2 Hidden in plain view, tidewater seaweeds are spectacular exhibits of Christ’s...

ACTS & FACTS
What It Takes to Make a Cell: A Review of The Stairway to Life
Rare is the science book that can hold even an average reader’s attention. But The Stairway to Life does just that. Coauthored by biochemist Laura...

ACTS & FACTS
Does Radioisotope Dating Prove an Old Earth?
Tim Clarey, Ph.D., and Vernon R. Cupps, Ph.D.* When most people think about radioisotope dating, they think of carbon-14 (C-14), or radiocarbon...

ACTS & FACTS
The Everglades: Two Biology Basics the Bible Got Right
Brian Thomas, Ph.D., and Gary Parker, Ed.D.* Imagine a river 50 miles wide and 100 miles long but only inches deep. Its slow flow is hidden...