Seeing the Case for Creation in Fruit Flies | The Institute for Creation Research


Seeing the Case for Creation in Fruit Flies

Our brain is designed to smoothly and constantly process what we see via the incredibly sensitive photoreceptors (cones and rods) of our eyes.1 But throughout a typical day, our eyes may be subject to rapid changes of shadows and light many times in a fraction of a second. Regardless, we are able to see almost seamlessly. How is this visual stability maintained?

Recently, a group of zoologists writing in Nature Communications discussed a complicated portion of visual processing called “gain control.”2 They reported, “the algorithms and mechanisms of rapid luminance gain control in Drosophila [fruit fly], resulting in stable visual processing.”3 This is not easy. The scientists stated that even with human technology, “computer vision devices struggle with rapidly changing background luminance.”3 In addition, it was determined there must be extra corrective mechanisms for steady visual processing.

How complex is this procedure? In a word, very. At the cellular level within the fruit fly brain, the scientists identified

specific transmedullary neurons as the site of luminance gain control, which pass this property to direction-selective cells. The circuitry further involves wide-field neurons, matching computational predictions that local spatial pooling drive optimal contrast processing in natural scenes when light conditions change rapidly.3

In other words, Christ the Creator has designed amazingly accurate visual behavior that “is stably processed under constantly changing lighting conditions.”4 This is incredibly complex and involves “neuronal cell types that are positioned two synapses [places where neurons connect] behind the photoreceptors”4 found in the compound eye of the fruit fly.

The researchers utilized a theoretical approach. Professor Marion Silies, head of the Neural Circuits Lab at the Johannes Gutenberg University, predicted

“an optimal radius in images of natural environments to capture the background luminance across a particular region in visual space while, in parallel, we were searching for a cell type that had the functional properties to achieve this.”4

This is accomplished by the discovery of “a cell type that meets all required criteria. These cells, designated Dm12, pool luminance signals over a specific radius, which in turn corrects the contrast response between the object and its background in rapidly changing light conditions.”4

Chance, deep time, and random genetic mistakes would never produce Dm12 cells plus all that is required to stabilize vision in such a detailed, choreographed manner.

“We have discovered the algorithms, circuits, and molecular mechanisms that stabilize vision even when rapid luminance changes occur,” summarized Silies, who has been investigating the visual system of the fruit fly over the past 15 years. She predicts that luminance gain control in mammals, including humans, is implemented in a similar manner, particularly as the necessary neuronal substrate is available.4

The tiny fruit fly continues to reveal incredible design evidence with its visual systems. Correctly interpreted, these data can be extrapolated to vertebrates and people.

References

  1. Thomas, B. Human Vision Can Sense a Single Photon. Creation Science Update. Posted on ICR.org August 8, 2016.
  2. “Gain control is a process that adjusts a system’s sensitivity when input levels change.” Barth-Maron, A., I. D’Alessandro, and R. I. Wilson. 2023. Interactions between Specialized Gain Control Mechanisms in Olfactory Processing. Current Biology. 33 (23): 5109–5120.
  3. Gur, B. et al. 2024. Neural Pathways and Computations That Achieve Stable Contrast Processing Tuned to Natural Scenes. Nature Communications. 15, article 8580.
  4. University of Mainz. How Fruit Flies Achieve Accurate Visual Behavior Despite Changing Light Conditions. Phys.org. Posted on phys.org October 31, 2024.

Stage image: Common Fruit Fly (Drosophila melanogaster)
Stage image credit: Copyright © CC BY 4.0, Alexis. Used in accordance with federal copyright (fair use doctrine) law. Usage by ICR does not imply endorsement of copyright holder.

* Dr. Sherwin is a science news writer at the Institute for Creation Research. He earned an M.A. in invertebrate zoology from the University of Northern Colorado and received an honorary doctorate of science from Pensacola Christian College.

The Latest
CREATION PODCAST
Water vs. Wind: The Controversial Coconino | The Creation Podcast:...
Welcome to the sixth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old...

NEWS
Fossil Fish Finally Filmed
The bizarre lobe-finned coelacanth (Latimeria chalumnae) “that flourished some 350 million years ago”1 continues to be a thorn...

NEWS
The Mosasaur: A Giant Sea Dragon
Mosasaurs (order Squamata) were massive marine lizards that were common in the pre-Flood oceans. Therefore, it is not surprising that their fossils...

DAYS OF PRAISE DEVOTIONALS
Summer 2025
...

NEWS
Was Life Detected on a Distant Planet?
There was celebration, albeit briefly, for the discovery of potential life on a planet called K2-18b, which is 124 lightyears away from Earth. The...

NEWS
Ichthyosaur Graveyard Explained by the Flood
Ichthyosaurs are marine reptiles that occur globally in the same rock layers as dinosaurs. Specimens with babies support the idea that they gave live...

CREATION PODCAST
What Do We Do With Geology's Unconforming Features? | The Creation...
Welcome to the fifth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old...

NEWS
Freshwater Fish Fossil in Australia
Yet another fish fossil has been discovered. This one was found in the Australian desert and was dated by evolutionists to be “15 million years...

NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...