"Simple Yet Elegant" Design in Fruit Flies | The Institute for Creation Research

"Simple Yet Elegant" Design in Fruit Flies
Graduate student Shiuan-Tze Wu led a study of some ingenious organization into the odor-sensing cells of fruit flies. He and his collaborators at the La Jolla campus of UC San Diego found that the odor-detector cells in the insects’ antennae talk to one another in a way that saves brainpower. It’s all so impressive that the senior author of the report called it “simple yet elegant,” according to the UC San Diego News Center.1

The team published in the Proceedings of the National Academy of Sciences.2 They ran a series of tests on the cells, each called an olfactory receptor neuron (ORN). The cells partner up into sets called sensilla—mostly in pairs, but sometimes in groups of up to four cells.

Their results showed that one neuron in the set stimulates a particular behavior, while its partner neuron inhibits that same behavior. Example fruit fly behaviors include attraction to vinegar or promotion of egg-laying. The PNAS study authors wrote, “A striking pattern emerged…ORNs housed in the same sensillum antagonistically regulate the same behavior.”2

The team built an olfactory map that identifies exactly which receptor pairs detect and process specific odors. Researchers refer to the electrochemical interaction between these cells as valence opponency. These interactions enable ORNs to do two things at once: They detect odors and regulate their own signals. How do they do it?

Electrochemicals dance across the tiny space between neurons in a sensillum. Together, these diminutive detectors quickly calculate the proper amount and preferred effect of each odor before they send a “do” or “don’t” message. This saves the fly brain’s computing power which might otherwise get overwhelmed with a barrage of confusing scents.

When sensors are arranged in an arbitrary manner (top), conflicting odor information may confuse animals. However, the valence-based organization in fruit flies can selectively transmit positive or negative valence odor information to effectively guide behaviors.
Image credit: Johnatan Aljadeff via UCSD News Center. Adapted for use in accordance with federal copyright (fair use doctrine) law. Usage by ICR does not imply endorsement of copyright holders.
Without these elegantly paired neurons, the fruit fly brain would take more time to process what the fly is smelling. It would also take more energy.

How ingenious is all this? For that matter, how does ingenuity like this even happen? Study coauthor Johnatan Aldajeff told UCSD, “We found that nature has chosen a specific way of structuring this sensory assay.” Nature chose? Really?

When, how, and where does nature actually make choices? And if he’s using metaphorical language so that nature didn’t actually choose anything, then who actually did make the required choices to organize fruit fly sensilla?

If nature really does make design and construction choices, then where are the examples? In the real world, choices come from sentient choice-makers.

Nature is as poor a substitute for a Creator as a puddle of pigment is for a painter. An unbiased view clears the way to attribute the “marvel” of these “simple yet elegant” dual-function fruit fly nerve cells to the work of a Person with the power to choose.

References
1. Aguillera, M. A Map for the Sense of Smell. UC San Diego News Center. Posted on ucsdnews.ucsd.edu January 28, 2022, accessed February 9, 2022.
2. Wu, Shiuan-Tze, et al. 2022. Valence opponency in peripheral olfactory processing. Proceedings of the National Academy of Sciences. 119(5): e2120134119.

*Dr. Brian Thomas is Research Scientist at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.
The Latest
NEWS
More Woolly Mammoth DNA
Woolly mammoths of the Ice Age1 were once found in huge numbers in Siberia, northern Europe, and North America. Organic remains from...

CREATION PODCAST
Giants, Genetics, and Pre-Flood Longevity | The Creation Podcast:...
Scripture describes humans living for a very long time, nearly a millennium before the Flood. Many scoff at this, stating this is reason to...

NEWS
Reflecting on Five Years of the ICR Discovery Center
Since its grand opening on September 2, 2019, the ICR Discovery Center has encouraged thousands of visitors from all over the world with science that...

NEWS
The Magnificence of a Colorful Autumn: Beauty and Complexity...
Scientists have long endeavored to comprehend the transformations that take place in trees and plants throughout the autumn season. While lacking complete...

NEWS
September 2024 ICR Wallpaper
"God, who made the world and everything in it, since He is Lord of heaven and earth, does not dwell in temples made with hands. Nor is He worshiped...

ACTS & FACTS
Creation Kids: Geysers
by Renée Dusseau and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

ACTS & FACTS
Sharing Our Creator's Truth
My name is Bill, and I’m the information technology manager at the Institute for Creation Research. I keep everything technical running and make...

ACTS & FACTS
Engineered Parallel Gene Codes Defy Evolution
Researchers over the past decade have been characterizing new, previously hidden genetic codes embedded within the same sections of genes that code...

ACTS & FACTS
La Brea Tar Pits at Hancock Park: Post-Flood Catastrophes
The La Brea Tar Pits have fascinated visitors ever since Spanish explorer Gaspar de Portolá chronicled the site in 1769.1 But even...

ACTS & FACTS
Proclaiming Christ in Paradise: An Interview with Dr. Brian Thomas
For more than 50 years, the Institute for Creation Research has investigated the evidence showing how science supports the Bible’s account of...