Self-Cloning Lizards Fit for Survival | The Institute for Creation Research

Self-Cloning Lizards Fit for Survival

More than 80 varieties of fish, amphibian, and reptile mothers are able to lay eggs that have not been fertilized and yet produce offspring. In a process called "parthenogenesis," these eggs hatch little clones of the mother, which in turn lay clone eggs themselves. Could this remarkable mode of unisexual reproduction have evolved?

At first, instances in the animal kingdom of females producing offspring with no male involvement were thought to be quite rare, but further study has shown that more of these self-cloning animal lineages have been swimming, hopping and crawling underfoot than was previously suspected. Recently, biologists crossbred (hybridized) two species of whiptail lizards, which produced new unisexual females in the lab. How this works "remains unknown," the researchers wrote in the Proceedings of the National Academy of Sciences.1

Their female whiptail lizard was "triploid," having an extra copy of the mother lizard’s chromosomes, and she was already parthenogenetic. The father had the normal "diploid" number of chromosomes—one set from each of its parents. The study produced four new parthenogenetic "species" that also have extra sets of chromosomes (a condition called "polyploidy").

These results were quite unexpected, considering that for decades, deliberate attempts to hybridize whiptail lizards in efforts to produce a new self-cloning population have resulted in sterile offspring. Wired Science reported that senior author Peter Baumann of the Stowers Institute for Medical Research "wonders if some lizard lineages might actually alternate between sexual and unisexual reproduction, depending on the pressures of each era."2

This possibility is intriguing, though doubtless any potential for lizards to switch reproductive modes depends less on "pressures" and more on internal programming. It would make sense that a Creator would have endowed these egg-laying vertebrates with the potential to perpetuate themselves even in the event that a male was unavailable.

A study of toads in Krygyzstan, for example, found that their ability to form polyploids has "reciprocal origins," occurring as a result of crosses and back-crosses between toads of different numbers of chromosome sets.3 Since polyploidy is linked to parthenogenesis, it is possible that both phenomena are made possible by intricate and purposively engineered reproductive systems.

The fact that parthenogenesis works implies that these creatures were originally outfitted with the biochemical equipment to facilitate two separate modes of reproduction: sexual and unisexual. In contrast, evolution has no useful explanation for the origin of sexual reproduction, let alone unisexual.4

References

  1. Lutes, A. A. et al. Laboratory synthesis of an independently reproducing vertebrate species. Proceedings of the National Academy of Sciences. Published online before print May 4, 2011.
  2. Keim, B. All-Female Lizard Species Created in Lab. Wired Science. Posted on wired.com May 3, 2011, accessed May 18, 2011.
  3. Stöck, M., et al. 2009. A Vertebrate Reproductive System Involving Three Ploidy Levels: Hybrid Origin of Triploids in a Contact Zone of Diploid and Tetraploid Palearctic Green Toads (Bufo Viridis Subgroup). Evolution. 64 (4): 944-959.
  4. Harrub, B. and Thompson, B. 2004. The origin of gender and sexual reproduction. Journal of Creation (formerly TJ). 18 (1): 120-127.

Image credit: William B. Neaves

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on May 25, 2011.

The Latest
NEWS
Fish Body Design Reveals Optimized Swimming Mechanics
Engineering-minded scientists have taken notice that many types of fish have bodies shaped like a low-drag airfoil that are characteristic of airplane...

NEWS
New Australian Dinosaur Surprises Evolutionists
A new study published in the journal Gondwana Research has identified a rather out-of-place bone from a theropod dinosaur called an elaphrosaur that apparently...

NEWS
Spinosaurus Swam! How a Swimming Spinosaurus Fits Scripture
Spinosaurus aegyptiacus had a longer body than the enormous T. rex. In Nature journal, researchers published a new reconstruction of the extinct reptile’s...

NEWS
Jungle Crickets Use Sophisticated Design to Avoid Bats
One hundred percent effective. How often does that happen, especially in the dog-eat-dog world of biology? Researchers from the University of Bristol in...

NEWS
T. rex Had Legs Designed for Walking
A new study published in the journal PLOS ONE has found that T. rex had legs made more for walking, rather than running.1 Their long legs were...

NEWS
Maple Syrup, Gold Nanoparticles, and Gratitude
It’s springtime in New England—an important season for maple syrup production. The maple syrup season is short, only lasting between four...

NEWS
A Day to Remember
"And this day shall be unto you for a memorial; and ye shall keep it a feast to the LORD throughout your generations; ye shall keep it a feast...

NEWS
Physics Today Article Ignores Monster Milankovitch Problem
An overview of the Milankovitch (or astronomical) ice age theory appears in the May 2020 issue of Physics Today.1 This theory (hypothesis, really)...

COVID-19
Pandemic Lockdown Result of Bad Software
One of the most frustrating things a person can go through is for their normally stable computer system, tablet, or phone, to suddenly stop working—a...

NEWS
Lone Scotland Tree Survived Deadly “Elm Disease”
One lone elm tree survived a deadly “elm disease.” Nicknamed “Ent Tree” (alluding to arboreal heroes in J. R. R. Tolkien’s...