Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method | The Institute for Creation Research
 
Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method

Download PDFDownload Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method PDF

by Andrew A. Snelling, Ph.D., Steven A. Austin, Ph.D., and William A. Hoesch, M.S.

Presented at the Fifth International Conference on Creationism, Pittsburgh, Pennsylvania, August 4–9, 2003. Published in: Proceedings of the Fifth International Conference on Creationism, R. L. Ivey (Ed.), pp. 269–284, 2003.

© 2003 Creation Science Fellowship, Inc., Pittsburgh, PA, USA. Published with permission. All rights reserved.

Abstract

The five-point Rb-Sr whole-rock isochron age of 1.07 Ga for the diabase sill at Bass Rapids, Grand Canyon, has been regarded for 20 years as an excellent example of the application of conventional radioisotopic dating. Initial thorough isotopic mixing within the sill is ideal for yielding concordant whole-rock isochron and mineral isochron ages. However, our new K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotope data from 11 whole-rock samples (eight diabase, three granophyre) and six mineral phases separated from one of the whole-rock diabase samples yield discordant whole-rock and mineral isochron “ages.” These isochron “ages” range from 841.5±164 Ma (whole-rock K-Ar) to 1375±170 Ma (mineral Sm-Nd). Although significant discordance exists between the K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotope methods, each method appears to yield concordant “ages” internally between whole rocks and minerals. Internal concordance is best illustrated by the Rb-Sr whole rock and mineral isochron “ages” of 1055±46 Ma and 1059±48 Ma, respectively. It is therefore argued that only changing radioisotope decay rates in the past could account for these discordant isochron “ages” for the same geologic event. Furthermore, these data are consistent with alpha decay having been accelerated more than beta decay, and with the longer the present halflife the greater being the acceleration factor.

Keywords

Diabase, Sill, Grand Canyon, Potassium-Argon, Rubidium-Strontium, Samarium-Neodymium, Lead-Lead, Radioisotopic Dating, Model Ages, Whole-Rock Isochron Ages, Mineral Isochron Ages, Discordance, Decay Constants, Accelerated Decay

For Full Text

Please see the Download PDF link above for the entire article.

The Latest
NEWS
DNA Repair Research Reveals Astounding Complexity
You have been designed with many trillions of cells. Within the nucleus of each cell (except for red blood cells) is the “molecule of life”...

NEWS
Photosynthesis: Clearly Designed from the Beginning
Unique structures in rare bacteria suggest the amazing process of photosynthesis is much “older” than evolutionists assumed. Photosynthesis...

NEWS
Under the Stars at ICR
On the evening of Friday, August 2, 154 creation enthusiasts attended an astronomy-themed evening at the ICR Discovery Center for Science and Earth...

NEWS
Inside August 2019 Acts & Facts
Why did we build the ICR Discovery Center for Science & Earth History? What solved mystery near Norway confirms Flood geology? How do bats, bees,...

NEWS
Rapid Chernobyl Adaptations Surprise Evolutionists
A recent Public Broadcasting Service (PBS) report highlighted creatures’ designed innate capacity to self-adjust to incredibly challenging exposures.1...