Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method | The Institute for Creation Research
 
Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method

Download PDFDownload Radioisotopes in the Diabase Sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An Application and Test of the Isochron Dating Method PDF

by Andrew A. Snelling, Ph.D., Steven A. Austin, Ph.D., and William A. Hoesch, M.S.

Presented at the Fifth International Conference on Creationism, Pittsburgh, Pennsylvania, August 4–9, 2003. Published in: Proceedings of the Fifth International Conference on Creationism, R. L. Ivey (Ed.), pp. 269–284, 2003.

© 2003 Creation Science Fellowship, Inc., Pittsburgh, PA, USA. Published with permission. All rights reserved.

Abstract

The five-point Rb-Sr whole-rock isochron age of 1.07 Ga for the diabase sill at Bass Rapids, Grand Canyon, has been regarded for 20 years as an excellent example of the application of conventional radioisotopic dating. Initial thorough isotopic mixing within the sill is ideal for yielding concordant whole-rock isochron and mineral isochron ages. However, our new K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotope data from 11 whole-rock samples (eight diabase, three granophyre) and six mineral phases separated from one of the whole-rock diabase samples yield discordant whole-rock and mineral isochron “ages.” These isochron “ages” range from 841.5±164 Ma (whole-rock K-Ar) to 1375±170 Ma (mineral Sm-Nd). Although significant discordance exists between the K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotope methods, each method appears to yield concordant “ages” internally between whole rocks and minerals. Internal concordance is best illustrated by the Rb-Sr whole rock and mineral isochron “ages” of 1055±46 Ma and 1059±48 Ma, respectively. It is therefore argued that only changing radioisotope decay rates in the past could account for these discordant isochron “ages” for the same geologic event. Furthermore, these data are consistent with alpha decay having been accelerated more than beta decay, and with the longer the present halflife the greater being the acceleration factor.

Keywords

Diabase, Sill, Grand Canyon, Potassium-Argon, Rubidium-Strontium, Samarium-Neodymium, Lead-Lead, Radioisotopic Dating, Model Ages, Whole-Rock Isochron Ages, Mineral Isochron Ages, Discordance, Decay Constants, Accelerated Decay

For Full Text

Please see the Download PDF link above for the entire article.

The Latest
NEWS
Denisovan Epigenetics Reveals Human Anatomy
A recent study making the news involves the reconstruction of the facial features and anatomy of the enigmatic humans known as the Denisovan from genetic...

NEWS
New Estimate: Universe Two Billion Years Younger
Big Bang scientists recently used a new method to estimate the universe’s age. This method yields an age estimate that could be over two billion...

NEWS
Pain-Sensing Organ Shows Engineering Principles
New human organs are rarely discovered, but that’s what several astute scientists recently accomplished at Sweden’s Karolinska Institutet’s...

NEWS
Inside October 2019 Acts & Facts
September 2, 2019, marked the grand opening of the ICR Discovery Center for Science & Earth History. When will you plan your visit? Why did God...

ACTS & FACTS
The Best-Kept Secret in Texas
Have we told you lately how thankful we are for your prayers and financial support? ICR’s ministry happens because of the Lord’s blessing...