Novel 'Junk DNA' Sequences Jumpstart Protein Production | The Institute for Creation Research

Novel 'Junk DNA' Sequences Jumpstart Protein Production

Researchers have just identified over 12,000 novel DNA sequences in the human genome, most of them in areas once thought to be "Junk DNA."1 These newly discovered DNA sequences, called "translation-enhancing elements," jumpstart protein production in certain situations and provide a whole new perspective on how proteins are produced in the cell.

When genes are expressed in the cell nucleus, the standard paradigm goes as follows: First, an RNA copy of the gene is made, called a transcript or messenger RNA (mRNA). Second, the mRNA transcript is spliced into different variants based on an assortment of regulatory signals and factors controlling the gene's expression. Finally, to provide a recognition and binding signal for the RNA to be ferried out of the nucleus and into the cytoplasm and then used as a template to produce a protein in a process called translation, a special tag-like molecule called a 7-methylguanosine cap is added to the front end of the RNA. This capping step in the mRNA processing phase is a key part of a process called "cap-dependent translation."

Another type of translation that does not use this form of capping mechanism was first discovered in virus genes and then also found in various other kinds of animal life as well as in humans.2 This type of translation uses a variety of RNA sequences that are added onto the mRNA transcript. Sometimes they are directly encoded in the gene that produces the mRNA and sometimes they are not. This type of translation is called "cap-independent" and has been implicated in central biological roles associated with cell growth, metabolism, and stress responses.2

Cap-independent translation in humans is poorly understood and the DNA sequences that code for its various features were not well known and difficult to determine—until now. Recently scientists have developed a technique whereby they are able to capture en-masse the wide diversity of "translation-enhancing element" fragments (TEEs) attached to mRNAs involved in cap-independent translation.1 After capturing these TEEs in literally trillions of RNA molecules, researchers determined their DNA sequence and location all over the human genome.

Scientists were surprised to discover that the human genome contains over 12,000 TEEs. A small number of these sequences were located directly next to genes which in some cases explained their attachment to the mRNA molecule. However, over 10,000 of the TEEs (the vast majority) were located in between genes around the genome and therefore copied into RNA fragments separately from the gene itself and then attached during the course of RNA processing described above. What's even more surprising is that these sequences were located across the genome in areas once thought to be meaningless sequence, often termed "Junk DNA."

Of course, we now know that the term "Junk DNA" should itself be relegated to the trash bin due to the fact that scientists are discovering that the entire genome is pervasively functional.3 These new discoveries not only discredit the idea that the genome is the product of imaginary evolutionary processes, but they also show the infinite complexity and wisdom of the Creator.

References

  1. Wellensiek, B. P. et al. 2013. Genome-wide profiling of human cap-independent translation-enhancing elements. Nature Methods. Posted on nature.com on June 16, 2013, accessed July 1, 2013.
  2. Kaiser, C. et al. 2008. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA. 14 (10): 2170-2182.
  3. Tomkins, J. 2012. Junk DNA Myth Continues Its Demise. Acts & Facts. 41 (11): 11-13.

* Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.

Article posted on July 17, 2013.

The Latest
NEWS
Aerial Engineering and Physics of the Dragonfly
Dragonflies (order Odonata) are perhaps one of the most studied and appreciated insects in the world today. Like the hummingbird, the dragonfly is a master...

NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...