Jungle Crickets Use Sophisticated Design to Avoid Bats | The Institute for Creation Research
Jungle Crickets Use Sophisticated Design to Avoid Bats
One hundred percent effective. How often does that happen, especially in the dog-eat-dog world of biology? Researchers from the University of Bristol in the UK and Graz University in Austria found exactly that in a life-saving strategy that a species of flying cricket uses. Where does perfection like this come from?

The cricket makes its home on Barro Colorado Island, Panama. There, bat calls punctuate katydids’ persistent jungle noises. Without some way to avoid bat sonar detection while flying at night, all sword-tailed crickets could soon get converted into guano. According to new results, published in Philosophical Transactions of the Royal Society B, the specific features they use to avoid bats work just right.1

The very moment these crickets hear a bat sonar signal at a certain volume, they stop flying and drop. But how do they know that sound came from a bat? The insects only respond “to ultrasonic calls above a high-amplitude threshold,” according to a University of Bristol Press Release.2

Once in the air, these flying crickets have no time to try and discern call pattern differences between bats, katydids, or other noises. So instead of call patterns, they tune in to a high-amplitude threshold that excludes all katydid sounds. Who set that threshold? If nature did it, then how many crickets had to get eaten before natural selection tuned that threshold? And how would the dead crickets digesting in bat stomachs have communicated what didn’t work to their living?

In addition, the insects’ “very low sensitivity” keeps them from responding to the katydid sounds with “similarly high sonic and ultrasonic frequencies.” The study authors wrote, “Remarkably, any increase in sensitivity would result in such false alarms.”1 The crickets would never even take flight if they constantly registered the many false alarm katydid calls.

How loud does the bat call need to be in order for these flying crickets to decide to drop from the sky? Exactly 85 decibels. That volume corresponds to a bat at “7 meters away, which is the exact maximum distance over which these bats would detect the swordtail crickets’ echoes.”1

Now who taught these crickets exactly when bat echolocation detects their tiny bodies?

The crickets combine low sensitivity with volume specificity to ignore katydid noise and pay vital attention to bat noise. The study authors wrote, “Their classifier is doubly optimal with 0% false alarms and 100% response to calls indicating detection by their echolocating predators.”1

Stated another way, “This strategy helps them achieve perfect false alarm rejections of background noise and perfect correct detection of dangerous bat signals.”1 We find a match in the Bible, where Psalm 18:30 says, “As for God, his way is perfect.” These crickets’ strategy and the Creator Who invented it both have this in common: Perfection.

Stage image: A sword-tailed cricket.
Stage image credit: University of Bristol. Adapted for use in accordance with federal copyright (fair use doctrine) law. Usage by ICR does not imply endorsement of copyright holders.


References
1. Romer, H. and M. Holderied. 2020. Decision making in the face of a deadly predator: high-amplitude behavioural thresholds can be adaptive for rainforest crickets under high background noise levels. Philosophical Transactions of the Royal Society B: Biological Sciences. 375(1802).
2. Staff Writer. Eavesdropping crickets drop from the sky to evade capture from bats. University of Bristol Press Release. Posted on Bristol.ac.uk May 8, 2020, accessed May 20, 2020.

*Dr. Brian Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.
The Latest
CREATION PODCAST
Why Do Animals Hibernate? | The Creation Podcast: Episode 45
The word hibernation is often used in reference to deep sleep, but what is it really? What kinds of creatures hibernate? How does this demonstrate the...

NEWS
Thalattosuchians—Extinct Crocodile Relatives?
The Thalattosuchia are an extinct group of marine crocodylomorphs (a group that includes the crocodiles) that allegedly transitioned from land to water...

NEWS
The Star-Nosed Mole
The star-nosed mole (Condylura cristata) is a fascinating semi-aquatic mammal found in eastern Canada and the United States. Moles (placental mammals)...

NEWS
The Hexagon: An Indication of Order and Design in Nature
In nature, noncoincidental patterns and geometry exist everywhere. But the number six appears to overshadow nature’s mathematical landscape. Whether...

NEWS
Neanderthal Crab Bake
The evolutionary science community said it perfectly in their headlines: “Proof that Neanderthals ate crabs is another 'nail in the coffin'...

CREATION PODCAST
Is There Any Truth to Dragon Legends? | The Creation Podcast:...
Dragons are considered by many to be made-up creatures in fairytales and legends, but our ancestors produced many descriptions and depictions of "dragons,"...

NEWS
Our Sun, Finely Tuned for Life on Earth
Aside from appreciating the splendor of the sun during a beautiful sunrise or sunset, many rarely consider how special, necessary, and finely tuned...

NEWS
March 2023 ICR Wallpaper
"Sing to the Lord with thanksgiving; Sing praises on the harp to our God, Who covers the heavens with clouds, Who prepares rain for the earth, Who...

ACTS & FACTS
Creation Kids: Auroras
by Lori Fausak and Susan Windsor* You’re never too young to be a creation scientist! Kids, discover fun facts about God’s creation...

ACTS & FACTS
Meet ICR's Donor Relations Department
Meet our Donor Relations team led by Director Charles (Chas) Morse. Their objective is to transform donated resources into Scripture-affirming science...