The Irreducibly Complex Genome: Designed from the Beginning | The Institute for Creation Research

The Irreducibly Complex Genome: Designed from the Beginning

The concept of what comprises a gene and how it works has changed markedly since the beginning of the modern genomics era about 35 years ago when the first viral gene was sequenced.1 Since then, entire microbial, plant, and animal genomes have been sequenced.

When research into gene function began, it was widely assumed that a one-to-one relationship existed between genes and their RNA and protein products. However, genome sequencing projects soon revealed that the large number of RNAs and corresponding proteins being discovered were hundreds of times more numerous than the number of genes found in the DNA sequence. We now know that this is due to the many complex mechanisms associated with gene function. In plants and animals, a gene typically produces a messenger RNA (transcript) from multiple segments of DNA in a gene region. These coding segments are called exons, while the non-coding segments (introns) are spliced out in the processing of RNA. A single gene region can produce a variety of transcripts by adding, multiplying, or eliminating exons in a process called alternative splicing (see Figure 1). For example, three neurexin genes in humans can produce over 3,000 different transcripts.2

This author is currently summarizing key points from secular research in the area of gene function to produce a literature review for journal publication that demonstrates the irreducible complexity of gene function. This project will show that concepts of genome evolution are incredibly oversimplified, disregarding the immense levels of functional complexity unveiled by just a few decades of genomics research.

In brief, it is now known that gene function involves: 1) diverse regulatory DNA sequences functioning as control features located throughout gene regions, 2) complex interconnections between genes and gene networks, 3) dynamic regulation of three-dimensional chromosome architecture, 4) the interplay of DNA chemistries and conformational features, 5) cell tissue type and physiological state, and 6) the effects of DNA sequence variation within gene pools. Even these categories can be further broken down into sub-fields of study.

Scientists have attempted to deduce a predictive splicing code for many genes.3,4 This effort has been complicated by the alternative splicing between genes located on completely different chromosomes.4 For this to occur, genes in different regions of the genome are dynamically positioned within close physical proximity of each other and transcribed in highly complex gene factory zones.3 All six of the broad mechanism categories described above are involved at this level of gene function, providing a virtual symphony of unfathomable biological complexity.

Our ever-increasing knowledge of the intelligently designed genome is fully discrediting concepts of genome evolution via natural processes. The genome is an irreducibly complex system designed and implemented from the very beginning with specific uniqueness to each and every created kind, as indicated in the book of Genesis.


  1. See Sherwin, F. 2011. So, What Is a Gene? Acts & Facts. 40 (10): 16.
  2. U of T researchers crack “splicing code,” solve a mystery underlying biological complexity. University of Toronto news release, May 5, 2010.
  3. Barash, Y. et al. 2010. Deciphering the splicing code. Nature. 465 (7294): 53-59.
  4. Horiuchi, T. and T. Aigaki. 2006. Alternative trans-splicing: a novel mode of pre-mRNA processing. Biology of the Cell. 98 (2): 135-140.

* Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.

Cite this article: Tomkins, J. 2012. The Irreducibly Complex Genome: Designed from the Beginning. Acts & Facts. 41 (3): 6.

The Latest
These Animals Are Masters of Disguise | The Creation Podcast:...
From the leopard's spots to the butterfly's wings, many of our planet's creatures possess the ability to hide in plain sight. Where did...

Do Fish Skulls Show Evolution?
Fish never learned to walk. Regardless, an evolutionary paleontologist suggested an undocumented scenario of how fish gradually evolved into four-legged...

Honoring Pioneers of Creation
It’s always fun to catch up with old friends. We recently asked some pioneers of the creation movement to share with us where they are in their...

Henry M. Morris and Duane T. Gish: Advancing the Cause of Christ
    The following excerpts by Dr. Henry Morris and Dr. Duane Gish were taken from the first issue of the Creation-Science...

Creation Pioneer Don DeYoung
I first met Dr. Henry Morris in 1973 when he spoke in chapel at Grace College in Winona Lake, Indiana. With a growing interest in creation studies,...

Creation Pioneer Larry Vardiman
Larry and Jeannette Vardiman   During my second year in graduate school at Colorado State University, I received a phone call...

Creation Pioneer David Coppedge
David Coppedge   I’ve lived in Santa Clarita, California, since 1992, but I grew up in the San Fernando Valley. My parents...

Creation Pioneer Russell Humphreys
Russell Humphreys   After I retired in 2008 from being an associate professor for the Institute for Creation Research, I moved...

Creation Pioneer Gary Parker
Gary Parker   In rural south Florida where I grew up (Arcadia, DeSoto County), where my wife, Mary, and I had the first of our...

Creation Pioneer John Baumgardner
My wife, Mary, and I currently live in central Virginia near Lynchburg and Liberty University, where I serve as research professor emeritus in the School...