Incredible Microprocessor Protein Acts as Genome Guardian | The Institute for Creation Research

Incredible Microprocessor Protein Acts as Genome Guardian

Researchers recently studied a highly sophisticated cellular machine that acts as a guard for the genome against harmful mutations and that evolution cannot explain.1

Humans have two sets of 23 chromosomes, and a mutational deletion in chromosome 22 causes a disease called DiGeorge syndrome in which heart and immune system defects occur, in addition to learning difficulties, mental retardation, and psychiatric disorders. The deletion eliminates a protein and stops the formation of a key piece of cellular machinery called a "microprocessor."

The microprocessor is actually a working complex of two important proteins called Drosha and DGCR8 (DiGeorge syndrome critical region 8). The mutation causing the microprocessor to be defective affects DGCR8.2 The microprocessor protein complex itself gets its name from the fact that it processes an important group of molecules called microRNAs. MicroRNAs are small molecules that help regulate gene expression.3

It turns out that the microprocessor does other important things besides processing microRNAs, like regulating transposable element activity. Just over 50 percent of the human genome contains a complex set of DNA features called transposable elements. Transposable elements and the important DNA features they encode are involved in gene regulation and genome function during development, growth, and normal cellular activity—negating their original prediction as "junk DNA."4

A small percentage of transposable elements in the human genome can be copied and moved around. This can cause problems and disrupt genes if not properly controlled. However, in its proper place, this activity has been found to play important roles in creating natural genetic variability.5 The genetic variability in the genome is why no two humans are exactly the same. In humans, little was known about how the regulation and control of transposable elements in the genome was accomplished until a research team recently studied how the microprocessor interacted with transposable elements.1

The researchers found that the microprocessor regulates transposable element activity by binding and cleaving the RNA copies (transcripts) originating from their DNA sequences across the genome. Thus, the microprocessor is an important player in keeping harmful mutations from developing in the cell by controlling transposable element activity. And it is possible that the RNA fragments produced from this process may be used in some aspect of genome regulation. Many processes in the cell produce byproducts that have important functions.

With such a multi-purpose and highly specific function, it is clear that the incredibly engineered microprocessors show powerful design features that are critical to life and good health and that cannot be explained by random evolutionary processes.

References

  1. Heras, S. R. et al. 2013. The Microprocessor controls the activity of mammalian retrotransposons. Nature Structural & Molecular Biology. 20:1173-1181.
  2. Roth, B., D. Ishimaru, and M. Hennig. 2013. The core Microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a non- specific RNA-binding protein. Journal of Biological Chemistry. 288 (37): 26785-26799.
  3. Salmena, L. et al. 2011. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell. 146 (3): 353-358.
  4. Tomkins, J. 2013. Transposable Elements Are Key to Genome Regulation. Creation Science Updates. Posted on icr.org March 27, 2013, accessed November 7, 2013.
  5. Bennett, E. A., et al. 2004. Natural Genetic Variation Caused by Transposable Elements in Humans. Genetics. 168 (2): 933-951.

* Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in genetics from Clemson University.

Article posted on November 11, 2013.

The Latest
NEWS
May 2025 ICR Wallpaper
"Now may the God of hope fill you with all joy and peace in believing, that you may abound in hope by the power of the Holy Spirit." (Romans...

NEWS
Acoustic Communication in Animals
We are all familiar with vocalizations in the animal world. For example, dogs bark, birds sing, frogs croak, and whales send forth their own distinct...

ACTS & FACTS
Creation Kids: Crystals!
by Michael Stamp and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

APOLOGETICS
Playing Chess with Little Furry Critters
God’s multifarious and marvelous designs for basic creature needs are so innovatively clever and providentially purposeful that Christ’s...

ACTS & FACTS
Credit Only Our Creator
History was my favorite subject as a young kid. But it always puzzled me when my teachers said, “We study history so that we don’t repeat...

ACTS & FACTS
Genomic Tandem Repeats: Where Repetition Is Purposely Adaptive
Tandem repeats (TRs) are short sequences of DNA repeated over and over again like the DNA letter sequence TACTACTAC, which is a repetition of TAC three...

ACTS & FACTS
Dinosaur National Monument: Fossil Graveyard of the Flood
Straddling the border of Utah and Colorado, Dinosaur National Monument (DNM) is one of the richest exposures of dinosaur fossils in the world.1...

ACTS & FACTS
The Transforming Influence of Genesis: Worker Dignity and Safety
When Pharisees questioned the Lord Jesus about marriage, He answered by quoting Genesis 1:27: “But from the beginning of the creation, God ‘made...

NEWS
Giant ''Meg'' Shark: Longer and Leaner?
Fossil remains of the giant shark Otodus megalodon have been found in Miocene1 and Pliocene2 rock layers, which ICR scientists...

CREATION.LIVE PODCAST
Searching for Truth Across the Globe | Creation.Live Podcast:...
How can we bring the Gospel of Jesus Christ and the truth of creation to others outside our small spheres of influence?   Host...