How Octopus Tentacles Find Crab Dinners | The Institute for Creation Research
How Octopus Tentacles Find Crab Dinners
Sever an arm from an octopus, and like an underwater zombie it’ll keep groping its surroundings. Even without a brain, its suckers still detect and grab crabs in lab experiments. Now Harvard researchers have begun discovering what makes octopus suckers so smart.

The team led by molecular biologist Nicholas Bellono found special sensory cells on each sucker’s skin surface.1 One type of sensor houses mechanoreceptors with the same basic structure as those found in fruit fly feet. Another type of sensor turned out to offer taste-like senses that are quite unique to octopuses. Yes, the octopus can taste with its tentacles.

Publishing in the journal Cell, the team called these octopus-specific skin sensors chemotactile receptors, or “CRs.”2 They put these cells and their receptor molecules through a battery of tests to figure out how they work. Not only do they work very well as underwater noses, but the team decided that these sensory systems can fine tune their own levels of sensitivity to chemicals and surfaces.

The study authors wrote, “Thus, CRs are capable of extensive signal filtering and coding, well-suited to contribute to peripheral processing in the distributed, semi-autonomous nervous system of the octopus arm.” A distributed system, like networked computers, involves separated information processing units that communicate with one another to achieve a common goal.

In the ordinary world, it takes an engineer to ensure a sensor is “well-suited” to the particular needs at hand. And it takes a software engineer to ensure that all the parts in a distributed system can talk to one another.

Just how ideal are these sensory systems for the life of an octopus? The researchers dug deep to find out. They examined protein expression levels and electrochemical responses to particular stimuli, as well as the arrangement of various cells within the skin.

It turns out that different types of sensory cells come packaged near to one another. They tested the idea that these cells help each other detect and interpret chemistry and surfaces. They wrote in Cell, “Such dynamic communication between sensory receptors and the voltage-gated conductances of their cognate cells could facilitate transmission of particular electrical signals to the nervous system depending on ligand identity, concentration, duration, or natural product mixtures (food versus ink, for example).”2

Thus, these molecular sensors are well-suited for the electrochemical properties of the cells that house them. And coordination between these cells enables them to process a wide variety of stimuli, including types, amounts, and mixtures of chemicals.

Who would have thought that each octopus sucker contains a whole laboratory worth of chemical detection tools? Engineers who build those large lab instruments can only drool at the fine form, fit, and miniaturization of these uniquely octopus-friendly detectors. But these researchers remained faithful to evolutionary dogma despite the plain-as-day evidence of intentional engineering in the octopus.

Coauthor Peter Kilian told the Harvard Gazette, “The strategies they have evolved in order to solve problems in their environment are unique to them and that inspires a great deal of interest from both scientists and non-scientists alike.”1

Indeed, the strategies are so ideal for octopus life that they should inspire a great deal of interest from both scientists and non-scientists over the question of whether they could have evolved at all.

Stage video: Octopus captures crab using suction cups on tentacles.
Stage video credit: Peter B. Kilian. Copyright © 2020. Adapted for non-commercial/educational use in accordance with federal copyright (fair use doctrine) law. Usage by ICR does not imply endorsement of copyright holders.


References
1. Siliezar, J. Touch and taste? It’s all in the suckers. Harvard Gazette. Posted on new.harvard.edu October 29, 2020, accessed November 13, 2020.
2. van Giesen, L., et al. Molecular Basis of Chemotactile Sensation in Octopus. Cell. 183 (3): 594–604.

*Dr. Brian Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.
The Latest
NEWS
Aerial Engineering and Physics of the Dragonfly
Dragonflies (order Odonata) are perhaps one of the most studied and appreciated insects in the world today. Like the hummingbird, the dragonfly is a master...

NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...