Wood-boring ‘Gribbles’ Do More Than Corrode Ships | The Institute for Creation Research
Wood-boring ‘Gribbles’ Do More Than Corrode Ships

Wood-boring “gribbles” have plagued wooden ships for centuries, and they continue to eat away at piers, docks, and driftwood. Just how do these tiny, pale crustaceans thrive on such tough fare? And do they fulfill any purpose other than destroying man-made marine structures?

The cellulose that is in plant cell walls harmlessly passes through the digestive systems of most animals and humans. However, certain fungi, bacteria, protists, a few clams and arthropods, and even cows have the unique ability to obtain energy by digesting cellulose. Many of them have symbiotic partners that assist in the process. For example, a cow’s “first” stomach chamber plays host to an array of fungi and microbes that manufacture the unique cocktail of enzymes required to break down the cellulose in grass.

Ocean piers are not made of flimsy grass blades. They are hard wood with cell walls that are not only made of cellulose, but are also impregnated with tough, globular molecules called lignin. Thus, researchers suspected that gribbles function interdependently with gut microbes, like termites do, to derive nutrients from this wood (also called “lignocellulose”). The microbes in the digestive systems of termites break down wood for the termites’ benefit, and in turn, the microbes rely on the termites for food and protection.

But in a study published in Proceedings of the National Academy of Sciences, UK researchers discovered that the gribbles’ guts are sterile. Thus, not only do they somehow fend off all germs from their digestive systems, they also must manufacture all their own enzymes to break down their fibrous food. The researchers analyzed the various enzymes in gribble intestine cells by mapping the RNA transcripts from just that tissue. They also looked at enzymes made by a specialized gland called the hepatopancreas that is associated with the gut.

Sure enough, they discovered that gribbles do make their own enzymes. They are the only animal yet discovered that does so. “Digestion of cellulose typically requires three major types of enzyme,”1 and all three were found in gribbles.

Not only do their gut cells have genes that code for the cellulose-digesting enzymes, but the study’s authors found evidence that certain enzymes secreted by the hepatopancreas are able to break apart lignin. They described how the lignin molecules within wood shield cellulose from the cellulose-degrading enzymes produced by the gribbles. Without some means of degrading lignin, it appears that gribbles would not survive. It is as though they were specially engineered by a person with the foresight to overcome all of the technical hurdles that stand in the way of the eventual payoff—obtaining energy from cellulose.

Of course, all these essential molecules would have no effect without the proper gross anatomy to manufacture, store, and manage them. For example, the functional integration of the gribble hepatopancreas with its digestive system—complete with tiny contracting muscles to squeeze the hepatopancreas products into the gut—and the gribble’s wood-chewing mouthparts all must have been in place at the same time for the gribble to survive the way it does. Gradually evolving parts would only have resulted in extinction before the species even got started.

But if this miniscule creature was created, what was its purpose—to cause generations of seafarers grief? Similar to the variety of land organisms that are able to digest wood, gribbles play a key role in the carbon cycle, albeit in coastal marine areas. A huge percentage of earth’s carbon is bound up in woody cellulose. Without the gribble and other wood-digesters returning carbon to the ecosystem, the carbon would be trapped within dead branches, becoming increasingly unavailable to life systems, and wood would pile up to clog river mouths and mangrove estuaries.

Thus, not only do gribbles appear to be well-constructed internally, they also appear to have been well-fitted to perform a key environmental task.

Reference

  1. King, A. J. et al. 2010. Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proceedings of the National Academy of Sciences. 107 (12): 5345-5350.

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on March 31, 2010.

The Latest
NEWS
Aerial Engineering and Physics of the Dragonfly
Dragonflies (order Odonata) are perhaps one of the most studied and appreciated insects in the world today. Like the hummingbird, the dragonfly is a master...

NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...