The Sands of Time: A Biblical Model of Deep Sea-Floor Sedimentation | The Institute for Creation Research
 
The Sands of Time: A Biblical Model of Deep Sea-Floor Sedimentation

Download PDFDownload The Sands of Time: A Biblical Model of Deep Sea-Floor Sedimentation PDF

Published in: Creation Research Society Quarterly, volume 33, number 3, pp. 191–198, 1996.

© 1996 Creation Research Society, St. Joseph, Missouri, USA. All Rights Reserved.

Abstract

Modern evolutionism requires that the earth be very old. One line of evidence cited is the length of time required to deposit the observed thickness of sea-floor sediments far from any direct continental source. Using the low current depositional rates results in a minimum age of tens of millions of years. The model of deposition presented in this paper differs from the conventional model primarily in the rate of deposition, which is asserted to have peaked at an enormous level during and after the biblical Flood and is presumed to have fallen at an exponential rate to the present low level. Because biblical evidence strongly supports a short historical period between the Flood and the present, the shape of the decay curve is very steep. Data from the Deep-Sea Drilling Project (DSDP) were reinterpreted for this paper. By estimating the thickness of sediment corresponding to this interval and asserting a set of boundary conditions, an analytical model is presented that estimates the age of sediment from a particular depth at a given borehole.

If the modern evolutionary model of deposition is correct, the water temperature evidenced by fossils would show only small, random variations. If a catastrophic event such as the Flood occurred, temporary warming of the water immediately after the catastrophe should have occurred and may be detectable. Fossil evidence of water temperature at the time of deposition is believed by some researchers to correlate with the ratio of oxygen isotopes of mass 16 and 18. Because foraminifera are common in both present-day and ancient sediments and contain oxygen in their carbonate skeletal remains, they are often analyzed for the oxygen isotope ratio and an inferred water temperature is calculated. Based on DSDP data from selected boreholes, and plotted on a timescale modified by the analytical model derived in this paper, a general cooling trend appears plausible from the limited dataset.

Keywords

Sea-Floor Sediments, Depositional Rates, Deep-Sea Drilling Project Data, Sediment Thicknesses, Boundary Conditions, Analytical Models, Water Temperatures, Foraminifera, Oxygen Isotopes, Cooling Trend, Age Estimates

For Full Text

Please see the Download PDF link above for the entire article.

The Latest
NEWS
DNA Repair Research Reveals Astounding Complexity
You have been designed with many trillions of cells. Within the nucleus of each cell (except for red blood cells) is the “molecule of life”...

NEWS
Photosynthesis: Clearly Designed from the Beginning
Unique structures in rare bacteria suggest the amazing process of photosynthesis is much “older” than evolutionists assumed. Photosynthesis...

NEWS
Under the Stars at ICR
On the evening of Friday, August 2, 154 creation enthusiasts attended an astronomy-themed evening at the ICR Discovery Center for Science and Earth...

NEWS
Inside August 2019 Acts & Facts
Why did we build the ICR Discovery Center for Science & Earth History? What solved mystery near Norway confirms Flood geology? How do bats, bees,...

NEWS
Rapid Chernobyl Adaptations Surprise Evolutionists
A recent Public Broadcasting Service (PBS) report highlighted creatures’ designed innate capacity to self-adjust to incredibly challenging exposures.1...