Birds Inspire Flight Sensor Inventions | The Institute for Creation Research

Birds Inspire Flight Sensor Inventions

The Wright brothers studied wing structures of seabirds before building their first airplane, and the first helicopter is said to have been inspired by dragonfly flight. Today, inventors continue this tradition, focusing on bio-inspired flight sensors. A series of telling admissions in a recent summary of state-of-the-art research leave no doubt about the origins of flight-ready sensors.

Gusts of wind tend to blow small, man-made flying machines called Micro Air Vehicles (MAVs) off course—or knock them out of the sky altogether. But insects and birds fare much better. What keeps them so stable? A team of inventors from Australia, publishing in the journal Progress in Aerospace Sciences, recently summarized their progress in the ongoing search for flight-stabilizing sensor technologies in flying animals.1

Biologists continue to uncover exquisite design in natural flight sensors—devices like mechanoreceptors that send sophisticated information to an insect's brain about the visual field, airflow, inertia, and wing-load pressure. Investigations have revealed that most or perhaps all natural sensors multitask. A single biological sensor can detect, integrate, and send multiple messages to the creature's brain. But when it comes to identifying who or what developed these hi-tech sensors, this journal report conveys contradicting messages.

On one hand, the study authors credited evolution. They wrote, "Nature's fliers have evolved to fly successfully close to the ground in turbulent conditions thus it is sensible to turn to nature for design cues."1

But could unguided nature really perform the tasks necessary to develop just the right aeronautical sensors to enable creatures to steady their flight in turbulent air?

Flying insects have tiny, wind-sensing hairs placed around their wing's edges—the best places to detect air turbulence the fastest. More tiny hairs project out the front of the insects' head and integrate with their eyes. The study authors wrote, "Their location on the head is practical, since the Signal-to-Noise Ratio (SNR) would be highest in that region due to the laminar flow existing here." And where should bio-inspired air sensors be placed onto new man-made mini flyers? The researchers wrote, "locating sensors thus requires a comprehensive understanding of the aerodynamics of the air foil."1 Does nature have this required level of intricate understanding?

What if birds were equipped with airspeed indicators tuned to 400 miles per hour? Birds never fly that fast, so such sensors would be a complete waste. For this reason, the team wrote that the sensors human inventors install will "require calibration to those conditions" that the flying machine will meet. Since "both birds and insects are equipped with sensors that suit their physical, anatomical, and physiological properties, in addition to their operating environment," doesn't it stand to reason that Someone performed these fined-tuned calibrations, since nature alone has never been shown to calibrate equipment?1

Plus, since the precise calibrations need to be performed one step ahead of the flight needs of each creature it stands to reason that whoever programmed these sensors had uncanny foresight—something nature lacks.

On one hand the study authors described how biological sensors have "optimally evolved to sense flight-related parameters."1 But on the other hand they wrote, "A delicate design balance is hence required to achieve high sensitivity while maintaining sensor bandwidth."1 How could natural processes, which have no clue what "sensor bandwidth" even means, ever have achieved the optimal balance required for stable flight?

The study authors also wrote that "nature's flyers do not rely on single sensors."1 Could evolution really integrate multiple functions into single sensors like those in insects and birds? These biological devices are so advanced that intelligent and capable inventors have not been able to build one—even with a living, working prototype right in front of them!

Even if a person does someday invent a multitasking sensor, it will do the aircraft no immediate good, since "it is not the sensors themselves, but the auxillary [sic] sub-components (hardware, installation, and wiring) and the algorithmic integration (CPUs and novel algorithms) of their measurements that build the gap in attitude stabilisation [sic] and control technologies for MAV."1 In other words, someone will have to write a blueprint to successfully install, wire, interpret and integrate inputs from any new sensor. Does any natural process perform all these tasks, each of which is required to construct a small and stable flyer? Clearly, in this case evolution is being given credit for constructions so ingenious that only "God, who made the world and everything in it" deserves credit.2

References

  1. Mohamed, A. et al. 2014. Fixed-wing MAV attitude stability in atmospheric turbulence—Part 2: Investigating biologically-inspired sensors. Progress in Aerospace Sciences. 71 (2014): 1-13.
  2. Acts 17:24

*Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on December 22, 2014.

The Latest
COVID-19
Looking for Provision
Lawmakers are at it again as they vote on the latest stimulus bill. This potential “relief” might bring you some much-needed peace, or perhaps...

NEWS
Desperate Dinosaurs Cannibalized During Global Flood
Scientists recently discovered evidence that large theropods were possibly guilty of cannibalism.1 The new study, published in PLOS ONE,...

NEWS
Dumbo Octopus, God's Wonder in the Deepest Deep
About 3,000 years ago, the Bible taught that the “wonders in the deep” are the “works of the Lord.”1 Now that truth...

NEWS
The Rocket Bug: Lone Insect of the Open Ocean
Various water-striding insects use small body sizes, long legs, and fine hairs on their feet to skate on the surfaces of ponds and streams. But life on...

NEWS
Cuckoo Completes Mammoth 7,500-Mile Migration
One particular common cuckoo will soon complete a mammoth migration through both Africa and Asia—a migration that is anything but common. Onon...

NEWS
Inside June 2020 Acts & Facts
How can we find joy, peace, and hope during dark times? What's going on in ICR's virtual classroom? How does the Flood model solve the Antarctica...

NEWS
Norwegians Find Viking Grave Under House Floor
In America we have the idiomatic expression “skeletons in the closet,” but what about finding a 1,000-year-old Viking grave, literally buried...

NEWS
‘Grand Canyon’ of Greenland Formed by Genesis Flood
A massive canyon rivalling Grand Canyon has been discovered beneath the ice on Greenland, and uniformitarian scientists are explaining it as a consequence...

DAYS OF PRAISE DEVOTIONALS
Summer 2020
...

NEWS
Hungry Bumblebees Hurry Pollen Production
May and June are abuzz with busy bees, really clever bumblebees.1,2 And their practical cleverness continues to astonish researchers, as a recently...