Tiny Ocean Plants Offer Biochemical Enigma | The Institute for Creation Research

Tiny Ocean Plants Offer Biochemical Enigma

Phosphorus, number 15 on the periodic table of elements, is considered a basic component of all cell membranes. But the recent discovery of single-celled photosynthetic organisms surviving without the chemical element in their membranes is going to require some major rewrites to biochemistry textbooks.1

Phosphorus is in short supply in the Sargasso Sea, located in the north Atlantic, where researchers from numerous institutions and universities found several autotrophs, including some diatoms and four different genera of photosynthetic bacteria, that can make cell membrane substitutes. In their study published online in Nature, the scientists report that the bacteria substitute a sulfur molecule called sulphoquinovosyldiacylglycerol (SQDG) in place of the standard phosphorus-containing molecule.2 Not only does the bacteria’s SQDG not need phosphorus, but it doesn’t need nitrogen either! These tiny creatures still require phosphorus for their DNA, but they can get along with less of this nutrient by manufacturing their own phospholipid substitutes.

What makes phosphorus a preferred element for membrane construction? These atoms can easily provide their molecule with a negative charge. This way, the oily ends of the phospholipids automatically interlock, while the charged, phosphorus ends automatically orient toward either ocean water outside of the cell, or watery cytoplasm within the cell. The sulfonate group of SQDG, with its negative charge, is functionally similar to the phosphate groups of the phospholipids. Though not as efficient, and perhaps requiring more energy to synthesize, “sulfonic acids of this type are chemically very stable and strongly acidic.”3 Both the stability and acidic charge enable SQDG to perform its required role.

These tiny plant cells can only make this chemical substitution because they have the necessary engineering to do so. They already have all the specified machinery (enzymes), along with the ATP and UTP (energy-providing chemicals), as well as the cofactor DHAP.4 Thus, these plants are well-equipped to survive, even when times are tough. “Cyanobacteria can make membranes that require essentially no nutrients, no phosphorus and no nitrogen. Totally no nutrients at all,” stated lead author Benjamin Van Mooy.1

The new discovery challenges the standard understanding of biochemical processes. Van Mooy, of the Woods Hole Oceanographic Institute, said in a press release, “Maybe there is an underlying principle here that we will uncover.”1

Perhaps the most significant principle is that these cells’ “plan B” membranes, which require structures and information storage systems to manufacture, were not invented by any natural process. Rather, they are a backup system that the Creator planned from the beginning. The creation model predicts that more backup systems like these will be discovered.

References

  1. Phytoplankton Cell Membranes Challenge Fundamentals of Biochemistry. Woods Hole Oceanographic Institution news release, February 2, 2009.
  2. Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. Published online February 1, 2009.
  3. Howard, K. P. and J. H. Prestegard. 1996. Conformation of Sulfoquinovosyldiacylglycerol Bound to a Magnetically Oriented Membrane System. Biophysical Journal. 71 (5): 2573-2582.
  4. Kleppinger-Sparace, K. F., and Mudd, B. J. 1990. Biosynthesis of Sulfoquinovosyldiacylglycerol in Higher Plants. Plant Physiology. 93: 256-263.

Image Credit: NASA

* Mr. Thomas is Science Writer.

Article posted on February 11, 2009.

The Latest
NEWS
Subsurface Oceans on Two Uranian Moons?
A team of researchers led by University of North Dakota planetary scientist Dr. Caleb Strom concluded that the two Uranian moons Ariel and Miranda (directly...

NEWS
Slowing Plates Support High Flood Boundary
Flood geologists have predicted that plate motion slowed at the end of the Flood year, and now conventional scientists are finding it to be true. A...

NEWS
Microscopic Ingenuity: Stentor and the Case for Intelligent Design
What if the smallest creatures held the biggest clues to life’s design? A 2025 study in Nature Physics investigates the remarkable behaviors of...

CREATION PODCAST
Dr. Jeff Tomkins | A Scientist's Journey to Creationism | The...
ICR’s science staff have spent more than 50 years researching scientific evidence that refutes evolutionary philosophy...

NEWS
Early Fish Evolution?
The discovery of a new species of a plant or animal would probably not spark much excitement to the non-scientist. But in this case, the conditions...

NEWS
Make Plans to Attend Our Estate Planning Workshop at the Discovery...
Did you know that up to 75% of Americans over 18 have no retirement or estate plans? Don’t wait to prepare for the future. Join us on Saturday, October...

NEWS
Fossil Confusion in Ethiopia: Are Evolutionary Trees Built on...
A new study published in Nature describes the discovery of 13 fossilized teeth from the Ledi-Geraru site in Ethiopia. They have been dated to between...

NEWS
The Only Mesozoic Dragonfly in Canada—Is a Dragonfly
In 2023, an undergraduate student from McGill University discovered a new dragonfly species in Alberta, Canada. In fact, “This is the first ever...

CREATION PODCAST
Dr. Jake Hebert | Journey to ICR | The Creation Podcast: Episode...
ICR’s science staff have spent more than 50 years researching scientific evidence that refutes evolutionary philosophy...

NEWS
Oldest Evidence of Butterflies
Insects such as the ubiquitous butterfly belong to the huge phylum Arthropoda (creatures having paired, jointed appendages and a chitinous exoskeleton)....