Self-sacrificing Cells Demonstrate a Selfless Designer | The Institute for Creation Research
Self-sacrificing Cells Demonstrate a Selfless Designer

Scientists have discovered that a single yeast cell gene (FLO1) expresses a protein that causes individual cells to stick to one another for protection. The cells flocculate, or form clumps “consisting of thousands of cells,”1 with the outside cells sacrificing themselves to protect the inner cells from possible harmful chemicals. These organisms have an obvious programmed behavior that mimics altruism, the principle or practice of unselfish concern for the welfare of others. But could nature have programmed it unaided, and if so, how?

The FLO1 study, published in the journal Cell, proposes that the common yeast “S. cerevisiae is also a model for the evolution of cooperative behavior.”1 The standard and often repeated mechanism for evolution involves “functional intermediates.” In this scenario, there was supposedly a series of mutation-generated biochemicals, each with new, immediately useful applications for those yeast cells. The cells from each step in that long series should be able to exist alone, being more fit than their competitors, and thus, the extant encyclopedias-worth of biological information present in the cells developed from zero information by accident and over vast time.

Functional intermediates are not even plausible when considering man-made machines; each machine is specifically designed (whether elegant or not) to serve a definite purpose. Therefore, it comes as no surprise that these researchers found evidence that the parts comprising the yeast flocculation mechanism must all be present at one time in order for it to function, thus precluding the possibility of functional intermediates. “Investing in the production of costly Flo adhesins [“sticky” proteins] is only useful when there is a sufficient concentration of other cells to form a floc,” the scientists reported.1 They also found that “flocculation is regulated by… tryptophol, as well as by the primary metabolite ethanol. Together, these results reveal a complex and tightly regulated social behavior in S. cerevisiae.”

Thus, without all the parts for this “tightly regulated behavior” in place, none of it would work. To begin with, the gene FLO1 must exist. The array of cellular equipment required to transcribe and translate that gene into a precisely-folded protein must exist. Specific biochemicals must exist that tell each cell whether or not it has joined with a neighbor. Functional intermediates are not observed and are certainly difficult to imagine in sufficient detail to render them even remotely plausible. What is observed is a programmed pattern of behavior that mimics altruism in single cells.

The research is described as showing “that even the simplest organisms are capable of sophisticated social discriminations in nature.”2 However, what it actually shows is that even the smallest organisms are not simple. The Creator’s genius is reflected from atoms to molecules to yeast to ecosystem interdependence to earth’s uniquely life-friendly placement in the universe. And in this case, His knowledge of selfless sacrifice has been hardwired into yeast.

References

  1. Smukalla, S. et al. 2008. FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast. Cell. 135 (4): 726-737.
  2. A single gene leads yeast cells to cooperate against threats. Harvard University press release, November 13, 2008.

* Mr. Thomas is Science Writer.

Article posted on December 1, 2008.

The Latest
NEWS
Bumblebee University
Entomologists, biologists who study insects, continue to uncover amazing discoveries regarding the intellect of bees1,2 Now, biologists...

CREATION.LIVE PODCAST
Struck: Risking It All for the Truth | Creation.Live Podcast:...
In this unique episode, host Trey talks with three key people involved in creating Struck—an upcoming miniseries that shows the special ties between...

NEWS
Giant Ants Buried in Receding Flood Rocks
Evolutionary scientists are baffled by a large ant fossil found in British Columbia, Canada. Known as Titanomyrma, this same ant had been found previously...

CREATION PODCAST
Why Do Animals Hibernate? | The Creation Podcast: Episode 45
The word hibernation is often used in reference to deep sleep, but what is it really? What kinds of creatures hibernate? How does this demonstrate the...

NEWS
Thalattosuchians—Extinct Crocodile Relatives?
The Thalattosuchia are an extinct group of marine crocodylomorphs (a group that includes the crocodiles) that allegedly transitioned from land to water...

NEWS
The Star-Nosed Mole
The star-nosed mole (Condylura cristata) is a fascinating semi-aquatic mammal found in eastern Canada and the United States. Moles (placental mammals)...

NEWS
The Hexagon: An Indication of Order and Design in Nature
In nature, noncoincidental patterns and geometry exist everywhere. But the number six appears to overshadow nature’s mathematical landscape. Whether...

NEWS
Neanderthal Crab Bake
The evolutionary science community said it perfectly in their headlines: “Proof that Neanderthals ate crabs is another 'nail in the coffin'...

CREATION PODCAST
Is There Any Truth to Dragon Legends? | The Creation Podcast:...
Dragons are considered by many to be made-up creatures in fairytales and legends, but our ancestors produced many descriptions and depictions of "dragons,"...

NEWS
Our Sun, Finely Tuned for Life on Earth
Aside from appreciating the splendor of the sun during a beautiful sunrise or sunset, many rarely consider how special, necessary, and finely tuned...