Radiohalos in Granites: Evidence for Accelerated Nuclear Decay

Download PDFDownload Radiohalos in Granites: Evidence for Accelerated Nuclear Decay PDF

RATE II: Radioisotopes and the Age of The Earth: Results of a Young-Earth Creationist Research Initiative, (Volume II), L. Vardiman et al., eds. (San Diego, CA: Institute for Creation Research and the Creation Research Society, 2005)

Abstract

The ubiquitous presence of 238U and 210Po, 214Po, and 218Po radiohalos in the same biotite flakes within granitic plutons formed during the Flood falsifies the hypothesis that all granites and Po radiohalos were created, but testifies to the simultaneous formation of these radiohalos. Thus if the Po radiohalos were formed in just a few days while the fully-formed 238U radiohalos were simultaneously generated by at least 100 million years worth (at today’s rates) of radioactive decay, radioisotope decay had to have been accelerated. Therefore, conventional radioisotope dating of rocks based on assuming constancy of decay rates is grossly in error. Accelerated radioisotope decay of 238U in zircons within the biotites rapidly formed the 238U radiohalos and produced large quantities of the short-lived 222Rn and Po isotopes. Hydrothermal fluids released by the cooling granitic magmas then transported those isotopes along the biotites’ cleavage planes to deposit the Po isotopes in chemically conducive, adjacent lattice defect sites, on average only 1 mm or less distant. The hydrothermal fluids progressively replenished the supply of Po isotopes to the deposition sites as the Po isotopes decayed to form the Po radiohalos. Because of the annealing of -tracks above 150°C, all the radiohalos only formed below 150°C. However, the U-decay and hydrothermal fluid transport started while the granitic rocks were crystallizing at higher temperatures. Therefore, the granitic magmas must have cooled rapidly or else the short-lived Po isotopes would have decayed before radiohalos could have formed. It is thus estimated that granitic plutons must have cooled within 6–10 days, and that the various Po radiohalos formed within hours to just a few days. The heat generated by accelerated radioisotope decay and tectonic processes during the Flood would have annealed all radiohalos in Precambrian (pre-Flood) granitic rocks at that time, so the few radiohalos now observed in these granitic rocks had to have formed subsequently by secondary hydrothermal fluid transport of 222Rn and Po isotopes in their biotites during the Flood. While convective flows of hydrothermal fluids moved and dissipated heat from granitic plutons in days, that mechanism alone would not seem capable of removing the enormous quantities of heat generated by accelerated radioisotope decay over that brief timescale. Other mechanisms must have operated to allow for the survival of the biotites and their 238U and Po radiohalos. The discovery of plentiful Po radiohalos in metamorphic rocks extends the application of the hydrothermal fluid transport model for Po radiohalo formation to these rocks. This confirms that hydrothermal fluids transformed deeply-buried sedimentary rocks to regional metamorphic complexes, which then had to have cooled within days for the Po radiohalos to have formed. Additionally, the prolific Po radiohalos found in granitic and metamorphic rocks and veins that host metallic ore lodes reflect the passage of the hydrothermal fluids that transported and deposited the metallic ores. This suggests such hydrothermal ore veins formed rapidly, and that Po radiohalos could provide an exploration tool for locating new ore lodes. Thus Po radiohalos provide powerful evidence of many rapid geological processes consistent with both the year-long catastrophic global Biblical Flood, and a young earth.

Keywords

radiohalos, granite, nuclear decay, RATE II

For Full Text

Please see the Download PDF link above for the entire article.


© 2014 Institute for Creation Research. All Rights Reserved.

Proclaiming Scientific Truth in Creation | www.icr.org