Whole-Rock K-Ar Model and Isochron, and Rb-Sr, Sm-Nd, and Pb-Pb Isochron, "Dating" of the Somerset Dam Layered Mafic Intrusion, Australia

Download PDFDownload Whole-Rock K-Ar Model and Isochron, and Rb-Sr, Sm-Nd, and Pb-Pb Isochron, "Dating" of the Somerset Dam Layered Mafic Intrusion, Australia PDF

Presented at the Fifth International Conference on Creationism, Pittsburgh, Pennsylvania, August 4–9, 2003. Published in: Proceedings of the Fifth International Conference on Creationism, R. L. Ivey (Eds.), pp. 305–324, 2003.

© 2003 Creation Science Fellowship, Inc., Pittsburgh, PA, USA. Published with permission. All rights reserved.

Abstract

The Somerset Dam layered mafic intrusion in southeast Queensland, Australia, has been conventionally dated as Late Triassic by the apparently successful application of radioisotopic dating techniques. Mineralogical, geochemical, and isotopic evidence indicates that all of this gabbro intrusion’s cyclic units were derived coevally from the same parental basaltic magma, with an initial homogeneous
isotopic mixture ideal for yielding concordant isochron ages. However, newly obtained K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotopic data from 15 whole-rock samples (representing all gabbro macrolayers in four of the intrusion’s cyclic units) yield discordant isochron “ages,” although the excellent-fitting 15-point K-Ar isochron suggests the resultant 174±8 Ma “age” (Middle Jurassic) should be regarded as the revised conventional age of the layered intrusion. Nevertheless, it is concluded that these discordances between the radioisotope systems are likely due to changes in their decay rates in the past, with the longer half-life β-emitter 87Rb being accelerated more and thus yielding an older “age.” Furthermore, the Sr, Nd, and Pb isotopes indicate the parental basaltic magma was derived from a depleted mantle source, while the large spread of Nd TDM “ages” suggests accelerated radioisotopic decay rates during the partial melting and magma ascent. It is concluded that the Somerset Dam layered mafic intrusion has inherited the radioisotopic signature of its mantle source, and so the conventional radioisotopic dating techniques do not provide its true age.

Keywords

Gabbro, Layered Intrusion, Australia, Potassium-Argon, Rubidium-Strontium, Samarium-Neodymium, Lead-Lead, Radioisotopic Dating, Whole-Rock Model “Ages,” Whole-Rock Isochron “Ages,” Discordances, Decay “Constants,” Accelerated Decay, Mantle Source Inheritance

For Full Text

Please see the Download PDF link above for the entire article.

The Latest
NEWS
Jurassic World 2 Opens
(Warning: the following article contains spoilers, although minimal.) Everyone loves dinosaurs—especially in movies. Jurassic World: Fallen...

NEWS
Century-Old Dinosaur Taxonomy Under Investigation
A recent article in New Scientist illustrates how difficult it is to classify various forms of life, such as dinosaurs, into groups.1 The article, based...

NEWS
The Cambrian Explosion Mystery Deepens
Trilobites (a type of arthropod) appear in sedimentary rocks as part of the Cambrian Explosion.1 In this episode, all the major animal groups first...

TESTIMONIALS
Standing Together for Truth
Hello! My name is Kristen Mitrisin, and I’m in the stewardship department at ICR, serving you through charitable gift annuities and saying thank...

NEWS
Could Designed Systems Explain Green Lizard Blood?
Green blood is not something you see every day. The recent search for why several species of lizards found in New Guinea have green blood assumes an...