Study Shows Proteins Cannot Evolve | The Institute for Creation Research

Study Shows Proteins Cannot Evolve

Researchers just announced the systematic laboratory induced mutation of successive amino acids over the entire sequence of a simple bacterial protein.1 The results showed how even the simplest of life's proteins have irreducibly complex chemical structures. The research also showed how random evolutionary processes that are ascribed to mutations are unable to propel evolution.

DNA holds the coded information that cells use to produce proteins, which are ordered chains of amino acids. Three successive nucleotide bases of DNA code for a single amino acid of a protein. Publishing in Nature, researchers successively changed the DNA code of an entire bacterial gene to mutate every amino acid of an 83-amino-acid protein. They then tested the ability of each mutant protein version to interact with its biological target in the cell.

What they proved was that proteins have a variety of specific regions that are highly sensitive to mutation—meaning that changes in these amino acids are not tolerated. Instead, they destroy protein function and negate evolution. These results support the prior research of Douglass Axe, a famous Cambridge protein biochemist who has also mutated large segments of bacterial proteins and is a strong critic of protein evolution and defender of intelligent design principles.2,3

In the simple bacterial protein they tested, 20 out of the 83 amino acids were off-limits to so-called random mutational evolutionary processes, since each of these single amino acid changes disabled protein function. Many of these mutation-resistant amino acid positions were in key sectors of the protein that interact with its "ligand, or chemical binding partner. Unfortunately for evolutionary concepts, these sectors are exactly where nature would need mutations to occur in order for it to construct new cellular interactions that might contribute to a new, selectable trait.

While the other 63 amino acids in the protein could be changed independently of each other (successively) without completely destroying the protein's function, their changes were limited to only a few of the possible 19 other amino acids with which they shared similar chemistries. This is because many amino acid changes, even outside the most critical sectors, still alter the overall 3-dimensional properties of the protein in negative, but not completely disabling, ways. Thus, even outside the non-negotiable sectors of the protein, optimal function was often hindered by just single amino-acid mutations—a finding described over 10 years ago by Douglass Axe.2

Data from similar, but less extensive, studies prior to this one show that random mutations in even the simplest of bacterial proteins have impossible hurdles to overcome if they are to create new function, even if it only happens one amino acid at a time. It also showed how key sectors of proteins are so tightly designed that they tolerate virtually no change whatsoever.

Imagine if this sort of experiment was done in more complex proteins that are hundreds of amino acids in length, or protein complexes that also include metal ions, carbohydrates, and ribo-nucleotides integrated into their structures.

Once again, the details of molecular biology in even a seemingly simple bacterial protein, point towards the creative hand of God.

References

  1. McLaughlin, R. N. et al. The Spatial Architecture of Protein Function and Adaptation. Nature. Published online before print, October 7, 2012.
  2. Axe, D. 2000. Extreme functional sensitivity to conservative amino acid changes on enzyme exteriors. Journal of Molecular Biology. 301 (3): 585-595.
  3. Axe, D. 2004. Estimating the Prevalence of Protein Sequences Adopting Functional Enzyme Folds. Journal of Molecular Biology. 341:1295-1315

* Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.

Article posted on November 9, 2012.

The Latest
NEWS
The Coelacanth: A Living Window into God's Design
Imagine a fish designed with such precision that it has thrived in deep, dark ocean waters for generations unchanged, resilient, and wonderfully suited...

CREATION PODCAST
Dr. Timothy Clarey | How Faith Shaped His Scientific Journey...
ICR’s science staff have spent more than 50 years researching scientific evidence that refutes evolutionary philosophy...

NEWS
Ant Super Smell: A Masterclass in God's Genetic Engineering
To an ant, the world is written in scent—and they read it with uncanny precision. A single colony can recognize thousands of chemical cues that...

NEWS
Subsurface Oceans on Two Uranian Moons?
A team of researchers led by University of North Dakota planetary scientist Dr. Caleb Strom concluded that the two Uranian moons Ariel and Miranda (directly...

NEWS
Slowing Plates Support High Flood Boundary
Flood geologists have predicted that plate motion slowed at the end of the Flood year, and now conventional scientists are finding it to be true. A...

NEWS
Microscopic Ingenuity: Stentor and the Case for Intelligent Design
What if the smallest creatures held the biggest clues to life’s design? A 2025 study in Nature Physics investigates the remarkable behaviors of...

CREATION PODCAST
Dr. Jeff Tomkins | A Scientist's Journey to Creationism | The...
ICR’s science staff have spent more than 50 years researching scientific evidence that refutes evolutionary philosophy...

NEWS
Early Fish Evolution?
The discovery of a new species of a plant or animal would probably not spark much excitement to the non-scientist. But in this case, the conditions...

NEWS
Make Plans to Attend Our Estate Planning Workshop at the Discovery...
Did you know that up to 75% of Americans over 18 have no retirement or estate plans? Don’t wait to prepare for the future. Join us on Saturday, October...

NEWS
Fossil Confusion in Ethiopia: Are Evolutionary Trees Built on...
A new study published in Nature describes the discovery of 13 fossilized teeth from the Ledi-Geraru site in Ethiopia. They have been dated to between...