Cell Division Research Discovers Sugar 'Safety Switch' | The Institute for Creation Research

Cell Division Research Discovers Sugar 'Safety Switch'

At a very basic level, the maintenance and reproduction of a living organism depend on the division of its cells. How does a cell “know” when or why to begin the division process, or even how to go about it? Research has revealed that the answers are complicated, and a recent breakthrough may add even more questions.

Under a microscope, cell division looks like a straightforward biological process. One cell seemingly just splits into two. But there is actually much more to it. After all, the two new resulting cells have to have all the needed parts that the original had―a copy of every DNA, protein, RNA, and other molecules―as well as at least one whole organelle for each.

How does the communication and transportation of these thousands of parts occur with such integrity and regularity in living things? In a report published in the journal Science Signaling, researchers from Johns Hopkins University School of Medicine and the University of Virginia have confirmed that not only are proteins and phosphates involved in the cell division’s internal communication, but so are certain sugars. Since most cellular investigative techniques rely on molecular characteristics such as size and charge, sugars—which are small and often have no charge—have been difficult to study.

By clever sleuthing, these biochemists discovered that a certain sugar can block a common chemical reaction involving phosphates and proteins. Only when the sugar is removed from the vicinity can the reaction take place, and only then does the protein activate to perform its function in cell division.

The reaction that occurs when an enzyme adds a phosphate to a protein is called “phosphorylation.” A separate enzyme can add the sugar, called “O-GlcNAc,” to the same or a nearby site on that protein, and this prevents the phosphate from being added there. Study co-author Gerald Hart said in a Johns Hopkins press release, “I think of phosphorylation as a micro-switch that regulates the circuitry of cell division, and O-GlcNAcylation as the safety switch that regulates the microswitches.”1

Further, these sugars act not as “on-off” switches, but rather more like “dimmer” switches. This way, the protein activity that coordinates, latches onto, and transports parts within the cell can be constantly fine-tuned during cell division.

It seems that just when scientists and educators think they have grasped how cells operate, they discover a whole new dimension that must be taken into account. The John Hopkins press release concluded that “the new sugar switches reveal that the cellular circuitry is much more complex than previously thought.”1

Considering the engineering required for the myriad cell parts, communication networks, and regulating switches that have been operating faithfully and continuously since the beginning of creation, only a supernatural Builder could be responsible for their existence. With each new dimension of interdependent components, the specified complexity operating in cells requires a renewed appreciation for the ingenuity of their Creator.

References

  1. Sweet!―Sugar Plays Key Role in Cell Division. Johns Hopkins Medicine press release, February 5, 2010, reporting research in Wang, Z., et al. 2010. Extensive Crosstalk Between O-GlycNAcylation and Phosphorylation Regulates Cytokinesis. Science Signaling. 3 (104): ra2.

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on February 18, 2010.

The Latest
NEWS
Built to Adapt: What Microbial Flexibility Reveals about Biological...
Imagine a machine that keeps working even when its parts change slightly or its surroundings shift. Most human-made machines would fail under that kind...

CREATION PODCAST
Scientists Ignored This DNA Pattern for DECADES! | The Creation...
Almost every living organism has tiny stretches of DNA that repeat over and over again. Scientists call these tandem repeats, and for a long time they...

NEWS
#1 Origins News Story of 2025: ICR Dr. Jeff Tomkins' Chimp Genome...
Research by ICR geneticist Dr. Jeff Tomkins was at the center of origins news in what has been called the “No. 1 Story for 2025.”1...

NEWS
Pterosaur Herbivory
The fascinating flying reptiles called pterosaurs are in the news again.1 In a not-so-surprising development, paleontologists have discovered...

NEWS
January 2026 ICR Wallpaper
"But those who wait on the LORD Shall renew their strength; They shall mount up with wings like eagles, They shall...

NEWS
Infrared Radiation and Pollination Reflects Recent Creation
by Jeffrey P. Tomkins, Ph.D., and Frank Sherwin, D.Sc. (Hon.)* The fascinating pollination of plants has been complex from the beginning of creation....

NEWS
Did Scientists Find "6 Million-Year-Old Ice" in Antarctica?
by Jake Hebert, Ph.D., and Frank Sherwin, D.Sc. (Hon.)* A small portion of surface ice in Antarctica is called blue-ice areas (BIAs), and for good...

ACTS & FACTS
Dinosaur Ridge: Last Stand of the Dinosaurs
Paleontologists have ranked Dinosaur Ridge as the top dinosaur track site in North America.1 Run by the nonprofit group Friends of Dinosaur...

ACTS & FACTS
An Incredible Year of Advancement! 2025 Year in Review
Dr. Guliuzza at chapel in Corban University, Salem, Oregon The Institute for Creation Research had another incredible year advancing creation...

ACTS & FACTS
Creation Kids: Seasons
Hi, kids! We created a special Acts & Facts just for you! Have fun doing the activities while learning about the wonderful world God...