Soft Tissue Fossils Reveal Incriminating Trends | The Institute for Creation Research
Soft Tissue Fossils Reveal Incriminating Trends

In December 2019, the journal Expert Review of Proteomics published a paper I authored with Stephen Taylor titled “Proteomes of the past: the pursuit of proteins in paleontology.”1 The article features a table that lists 85 technical reports of still-existing biomaterial—mostly proteins—discovered inside fossils.

Can proteins last millions of years? Not according to decay rate measurements. Five incriminating trends emerged from these 85 secular reports. Our review sharpens the tension between how short a time biochemicals last and the supposed age of the fossils that contain them. We wrote:  

Collagen decay rate experimental results build a temporal expectation that restricts bone collagen to archeological time frames, yet many reports of collagen and other proteins in older-than-archeological samples have sprinkled the paleontological literature for decades. Tension between the expectation of lability [susceptibility to chemical breakdown] and observations of longevity has fueled steady debate over the veracity of original biochemistry remnants in fossils.1

 
Image credit: Thomas, B. and S. Taylor. 2019. Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics. 16 (11-12): 881-895.

The 85 reports included descriptions of original skin, connective tissues, flexible and branching blood vessels, bone cells, and probable blood cells. Original biochemistry includes tattered but still-detectable osteocalcin, hemoglobin, elastin, laminin, ovalbumin, PHEX, histone, keratin, chitin, possible DNA, collagen, and collagen sequence—all inside fossil bones.

The first trend we found noted biomaterials from all kinds of different fossilized animals, not just dinosaurs.2 Thus, researchers need not restrict their searches for fossil biomaterials to any specific plant or animal type.

The second trend from all of these reports, which span over a half century of exploration, found no better preservation in one ancient environment over another. Whether living in air, oceans, lakes, swamps, or forests before they were fossilized, fossils could still contain biomaterials.3

Third, a bar graph of the number of relevant publications per year showed an increased interest in this field within the last two decades. Additionally, Figure 5 from our paper plots discoveries onto a world map to show that biomaterials in fossils occur virtually worldwide. We predict that future investigations could discover original biomaterials wherever fossils are found.

The fifth and final trend presents the biggest obstacle for those who insist that rock layers represent vast eons. We found reports of original biomaterials from seven of the 10 standard geologic systems plus one report each from the Precambrian and Ediacaran layers—the bottommost sediments on Earth. As one of our anonymous peer reviewers protested in response to these findings, having biomaterials last over 70 million years—let alone 500 million—is simply fantasy.

Proteins decay relentlessly and relatively fast. Yet protein discoveries keep piling up. Thus, “it is likely that contention will persist.”1 Our secular colleagues now have a sharper look at the vast depth and wide spread of young-looking biomaterials from fossils.

References

  1. Thomas, B. and S. Taylor. 2019. Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics. 16 (11-12): 881-895.
  2. Tissues or biochemistry were reported in dinosaur, eggshell, turtle, bird, marine worm casings, sponge, clam, mosasaur, tree, insect, arachnid, frog, salamander, and crinoid fossils.
  3. “Fossilized” does not necessarily mean “mineralized,” as this list clearly shows. Fossils include remains of once-living things that were totally replaced by minerals, partly replaced by minerals, mineralized only in tiny pore spaces, or not mineralized at all—like natural mummies.

* Dr. Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.

Cite this article: Brian Thomas, Ph.D. 2020. Soft Tissue Fossils Reveal Incriminating Trends. Acts & Facts. 49 (11).

The Latest
NEWS
Aerial Engineering and Physics of the Dragonfly
Dragonflies (order Odonata) are perhaps one of the most studied and appreciated insects in the world today. Like the hummingbird, the dragonfly is a master...

NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...