Bio-Origins Project Update, Hypothesizing Differential Mutation Rates | The Institute for Creation Research

Bio-Origins Project Update, Hypothesizing Differential Mutation Rates

You might expect that the same gene in different creatures would have the same sequence. Surprisingly, this is not so. As we reported last month,1 our preliminary protein/DNA comparison data show profound molecular differences across creatures, and these differences fall along traditional Linnaean classification groupings as shown in Figure 1.

What would you conclude from this result? How did these differences arise? Was this same gene created differently in different creatures? Did these differences arise primarily because of post-creation and post-Flood change? How do we explain these results from a young earth perspective?

One fascinating hypothesis is that these differences arose as a result of different rates of mutation accumulation in different “kinds.” This hypothesis—that the differences stem from different rates of origin—is different from the evolutionary explanation that the differences reflect different times of origin.

Consider the basics of molecular biology for how this might play out practically: The genome (complete set of genetic instructions) in each creature is unique, but genes (subsets of DNA sequence that are ultimately translated to protein) involved in common cellular processes are shared across diverse creatures. If we assume, for example, that God created the same ATP6 (one particular gene involved in energy transformation) gene sequence in elephants, mice, and fruit flies, and if we assume that elephants accumulated mutations slowly; mice, slightly faster; and fruit flies, much faster, then after 6,000 years of mutations, mice would appear (molecularly) different from elephants, and fruit flies would appear even more different from both mammals. Hence, a hierarchy of mutation accumulation rates could produce a hierarchy of molecular differences over time.

Preliminary data on species’ rates of mutation accumulation are consistent with the above hypothesis. A key factor in these rates is the speed at which species reproduce.

One measure of species’ reproduction rates is generation time—the time from conception to sexual maturity. Comparison of the generation times in elephants, mice, and fruit flies shows a hierarchy of time as shown in Figure 2—elephants reproduce slowly, mice more quickly, and fruit flies the fastest. Conversely, by calculating the theoretical number of generations that have passed in each of these species since creation, it is apparent that fruit flies have had many more opportunities to accumulate mutations than either of the mammals (Figure 2).

This very small dataset is consistent with the differential mutation rate hypothesis. However, we have much more data to analyze before we reach any firm conclusions.

References

  1. Jeanson, N. 2012. Bio-Origins Project Update, Comparing 2,000 Animal Species Molecularly. Acts & Facts. 41 (9): 6.
  2. Altman, P. and D. Dittmer, eds. 1972. Biology Data Book, Vol. 1, 2nd ed. Bethesda, MD: Federation of American Societies for Experimental Biology.
  3. Basic Methods of Culturing Drosophila. 2007. Bloomington Drosophila Stock Center at Indiana University. Posted on indiana.edu., accessed July 26, 2012.

* Dr. Jeanson is Research Associate and received his Ph.D. in Cell and Developmental Biology from Harvard University.

Cite this article: Jeanson, N. 2012. Bio-Origins Project Update, Hypothesizing Differential Mutation Rates. Acts & Facts. 41 (10): 6.

The Latest
NEWS
Seafloor Spreading Matches Creation Predictions
Evolutionary scientists recently determined that seafloor spreading has been slowing down.1 And they are not exactly sure of the reason. However,...

NEWS
Remembering Patti Morse
But none of these things move me; nor do I count my life dear to myself, so that I may finish my race with joy, and the ministry which I received from...

CREATION PODCAST
What Happened with Washington's Violent Volcano? | The Creation...
How did a 1980 volcanic eruption change our understanding of geology? What impact did this event have on the age assignments of sediments? Join us for...

NEWS
Fossil Insect Predation Shows No Evidence of Evolution
Some recent science news stories have come out describing fossils of insects feeding on plants supposedly many “millions of years ago.” What...

NEWS
Adaptive Genetic and Epigenetic Changes in Plants
Being sedentary organisms, plants are essentially stuck where they are planted and need to dynamically adapt to the conditions around them to not only...

NEWS
Dr. Tim Clarey Awarded Adjunct Professor of the Year
Congratulations to ICR Research Scientist and geologist Dr. Tim Clarey! He received the Adjunct Professor of the Year award from King’s University,...

NEWS
Mars Rover Records Dramatic Solar Eclipse
NASA’s Mars Perseverance rover has filmed the Martian satellite (or moon) Phobos eclipsing the sun, and this short but impressive video may be viewed...

CREATION PODCAST
Darwin or Design? CET Pt. 2 | The Creation Podcast: Episode 22
How does design provide a better explanation for biological functions and adaptations than natural selection? And how can engineering principles help...

NEWS
Resurrecting “Ancient” Enzymes?
The most abundant protein on Earth is probably an enzyme (biological catalyst) called RuBisCO (or Rubisco) designed by the Creator to function in photosynthesis.1...

NEWS
Inside May-June 2022 Acts & Facts
How can Christians stand up to scientific elitism? What does the plant fossil record in Iceland tell us about the global Flood? Does a new bacterium...