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ABSTRACT

| discuss the possibility of variation of coupling constants and particle masses within modern physics.
Quantum mechanical calculations are presented giving the decay constant for alpha decay and its
variation with depth of the nuclear potential well. Finally, a concrete, numerical approach is given for the
possible variation of the Fermi constant over the history of the earth.

INTRODUCTION

Modern physics involves more abstraction than the physics of even 20 years ago. Hence, it becomes an
endeavor which may lead researchers into false starts and/or require us to solve the same problem in
several different ways. However, it appears that physics research needs to involve different approaches
in order to succeed. Kaluza-Klein theories, which were previously discussed [10], have developed in
recent years into multidimensional string theory. These theories attempt to explain the existence of
gravitational, electromagnetic, weak nuclear and strong nuclear forces within a single theoretical
framework. The development of string theory provides many examples of false starts. However, new
understandings of mathematics and physics have enabled reasons and explanations to be given in
particle physics which had not been previously possible. Attempting to take advantage of these new
descriptive capabilities, let us consider the possibility that string theory may be relevant to the age of the
earth question.

In particular, consider the subject of accelerated radioactive decay, which is the study of the possibility
that radioactive half lives had smaller magnitudes earlier in history than today. Some concepts from
modern particle physics lead to possible mechanisms for changing half lives. In particular, they lead to
possible variation of the Fermi constant, which is the number in beta decay theory which most directly
fixes the rate of nuclear decay by transmutations of neutrons to protons and vice versa.

If the age of the earth is measured in thousands rather than billions of years, then how does one explain
the isotopic abundances of, for example, uranium, as found in geological samples? If half lives have
varied over earth history, then nuclear physics must be altered in some way, and the altered theories
could lead to new explanations for the isotopic abundance variations with time [8, 11]. If there has been
accelerated decay at some points in earth history, it will be impossible to successfully explain the data
without recognizing and modeling this fact. Examples of "constants" which are no longer considered to
have remained constant over the history of the universe are found in great quantity in recent physics
literature. A common denominator of many of these examples is multidimensional string theory.

In this paper, some examples which are directly related to nuclear decay rates will be examined. Then
we will discuss some ideas about multidimensional topology and how this relates to the quantities in
physics which most directly determine decay rates, the so-called "coupling constants." Then we consider
their allowed variability according to modern theories, principally relying upon some work of Weinberg
[47] and then progressing to a somewhat different approach starting with the paper by Nath and
Yamaguchi [36].
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Figure 1. The Square-Well Potential with Coulomb Barrier
ALPHA DECAY AND VARIATION OF THE NUCLEAR FORCE STRENGTH

Historically, the numerical treatment of alpha decay has relied on quantum mechanics and the tunneling
theory [38, 40]. Figure 1 shows the usual scheme where the potential felt by an alpha particle is modeled
by a square well for the interior of the nucleus and a Coulomb repulsion outside. Classically, a particle
could not occupy region Il of the figure; thus it could not have the negative energy that would be required
for it to have only a few MeV of kinetic energy when it escapes to infinity. However, a wave such as that
used in quantum theory can leak through, even though the particle would have a negative energy for
radius less than the re value shown in the figure.

Although the changes in physical “constants” suggested in recent physics literature are very small [11],
alpha decay rates are very sensitive to small changes in well depths or shapes. At the 1994 International
Conference on Creationism , Chaffin [12] discussed results of a numerical study, using a simple
computer program, which allowed the depth of the nuclear potential well to vary. The radius of the
nucleus and the depth of the potential well represent two variables which are tied to the energy of the
emitted a-particle and the decay constant. In this simple model a constraint is needed, which may be
take to be the approximate constancy of radioactive halo radii [11, 22, 30, 44]. If the energy of the a-
particle is held constant, then the halo radius will also be constant. Since the radius of a halo ring is
slightly dependent on the dose of radiation and the size of the halo inclusions, an exact constraint on the
a-particle energy cannot be maintained. For a 5 MeV change in the potential well depth, with the a-
energy held exactly constant the computer program showed that the decay constant will change by only
one power of ten. If the a-energy is allowed to change by 10% or so, then the decay constant changes
by about 10°. If the accelerated decay needed to explain the data is restricted to about one year or so,
then a change in the decay constant of 10° or so may be required [14]. Thus these considerations
seemed to indicate that a one-year episode of accelerated decay at the time of the Flood may not be
enough.

To test the variability of the decay constant, the computer program mentioned above, which was a
Fortran program, was rewritten using Mathematica, a very powerful, modern software package which
facilitates numerical work of this sort. For the square well potential on the inside of the nucleus, the
Mathematica notebook gave essentially the same answers as the earlier work. In collaboration with
Gothard and Tuttle [9], Chaffin modified the notebook to use a harmonic oscillator potential for the
interior region, where the nuclear potential is felt by the alpha particle. In the course of this work, it was
discovered that, as the nuclear potential well depth is changed, and the nuclear radius changes slightly, it
is possible to have a sudden change in the number of nodes of the real part of the alpha particle's
wavefunction. This was modeled for both the harmonic oscillator and square well potentials, with nearly
the same results for either notebook.
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Figure 2. Sudden change in the number of nodes. The harmonic oscillator wave function for well depths
of 68 MeV (a) and 54 MeV (b). The x-axis is the radial coordinate of the alpha particle, T=p/(21), where p
and n are defined in Green and Lee [26]. Figure 2a shows the harmonic oscillator wave function for a
well depth of 58 MeV. Figure 2b shows what happens when the well depth is changed to 54 MeV,
without changing the alpha particle energy. If one counts the number of nodes in Figure 2a, there are
nine, not counting the ones at zero and infinity. For Figure 2b, there are eight nodes, a reduction by one.
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Figure 3. The decay constant versus well depth for the harmonic oscillator interior potential. The graph
shows a discontinuity, which occurs when the wavefunction changes the number of nodes as the radius
slowly increases.

The change in the number of nodes causes the probability of tunneling to change by about a factor of
ten, as shown by the discontinuity in the graph of Figure 3. Tunneling probabilities depend on the size of
the wavefunction at infinity. The two graphs of Figure 2a,b show the wavefunction decreasing to zero at
infinity. However, the probability of alpha decay for a nucleus such as uranium-238 is very low, hence the
wavefunction will have small oscillation of both its real and imaginary parts, too small to show on this
scale. Figure 4 shows a plot of the real part of the wavefunction for well depth parameter of 54, done with
Mathematica. The x-axis shows a dimensionless variable T (defined in [21]), whose size represents the
distance from the nucleus.
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Figure 4: The real part of the Coulombic wavefunction outside the Coulomb barrier. The oscillatory
behavior shows that the probability of escape is not zero for the alpha particle. The x-axis is the
dimensionless radial coordinate p defined in Green and Lee [26].

The use of potentials with a sharp boundary between the interior and exterior of the nucleus is not
realistic. Consequently, In collaboration with Daniel Banks [7], a Mathematica notebook was written to
use the exponentially diffuse boundary square well for the interior of the nucleus. This interior potential
was originally investigated in a classic work by Green and Lee [26], although they did not apply it to
alpha decay. Figure 5 shows the potential well and the corresponding wavefunction for this case.
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Figure 5: The Exponentially Diffuse boundary potential and the corresponding wavefunction. The vertical
axis is energy in MeV and the horizontal axis is the radius p. For the wavefunction, the vertical axis is the
real part of the wavefunction multiplied by ten.

The use of this potential allows the potential energy to increase gradually as the distance increases
outward and the nuclear force yields to the Coulomb repulsion. The treatment is somewhat complicated,
in that now the wavefunction is a spherical Bessel function on the interior of the well, whose logarithmic
derivative is matched to a Bessel function of nonintegral order for the changeover region, and then to a
Coulomb wavefunction for the exterior region. There is now an interior radius for the changeover region,
as well as an exterior radius. Either one can be varied to see what the effect is. In summary, it is found
that the size of the variations is about what we obtained for the simpler cases of the square well or
harmonic oscillator well.

The depth of the nuclear potential well is determined directly by the strength of the strong nuclear force,
hence by the “strong coupling constant.” A coupling constant is a number inserted in a theory to fix the
strength of a force. We determine it experimentally, but theories exist which indicate that it may not be a
constant over the history of the universe. Hence, we will discuss the relevant parts of these theories in
the next few sections.

TOPOLOGY AND STRINGS

Multidimensional string theories quickly lead to the branch of mathematics known as topology. This, of
necessity, is what happens when one takes these extra coordinates, or dimensions, seriously. An n-
dimensional manifold is a space which can be transformed into a connected polyhedron, and such that
every point can be surrounded by a collection of other points which is equivalent to the interior of an n-
dimensional ball [2, 35, 39]. For example, the surface of a sphere is a two-dimensional manifold, which
mathematicians write as S (pronounced S-two, not S-squared). One needs two numbers to specify a
point on this manifold, hence the number 2 means it is two-dimensional. Another two-dimensional
manifold is the surface of a torus, T. For precise, mathematical purposes, the sphere S” and the torus T
are distinct entities, and should not be confused.
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Figure 6. The position of a pendulum bob, confined to move in a single vertical plane, can be completely
specified by a single linear coordinate x, provided the pendulum does not swing over the support's level.
If the pendulum is free to swing higher than the support, then the circular topology is needed to specify
the position. (Figure drawn after Rourke and Stewart, [41]).

For example, suppose we are trying to describe the motion of a pendulum (Figure 6). Initially, let us
suppose that the pendulum is swinging back and forth, staying perfectly within the confines of a vertical
plane. Then we could draw a line, or projection, down to the point on a flat, horizontal surface directly
below the pendulum ball. A single coordinate x would then suffice to specify the position of the pendulum
ball, this coordinate specifying the position on a straight line. However, for large oscillations of the
pendulum, and if the pendulum was fixed by a universal joint at the top, the pendulum could swing over
the top. Our single coordinate would then not suffice to distinguish positions above the support from
positions below the support. Hence, a more correct mathematical model for the pendulum would be the
circle. If, in addition, the pendulum were now able to swing in all directions, and not confined to one
vezzrtical plane, then the circular topology becomes inadequate, and a more correct model is the sphere,
S.

Suppose now that the problem is that of two pendulums, each confined to move in a vertical plane but
allowed to swing over the top. The two pendulums move independently of each other, assuming
positions on two different circles. The combined coordinates now have a different topology, the topology

of the torus, T

One of the early pioneers of topology was Henri Poincaré, whose active work on the subject occurred
during the 1890's up to his death in 1912. Poincaré analyzed different surfaces by thinking in terms of
deformations of loops, which links to what are now called homology and homotopy. In mathematical
topology, homology theory concerns itself with the question of the number of holes in the space. Shown
in Figure 7 are three curves, a, b, and ¢ on the surface of a torus. The curves a, b, and ¢ have something
in common, they cannot be shrunk to a point by continuous sequence of deformations. For curves a and
b it is because the hole is there. For curve c it is because the curve is wound around a closed
circumference and cannot be shrunk unless one cuts the curve, moves it, and then pastes the ends
together. In topology, this is described by stating that a and b belong to the same homology class,
whereas c belongs to a different class. Similarly, the concept of homotopy concerns itself with deforming
loops. Two loops are homotopic if they can be continuously deformed into each other. These concepts,
and others, become important tools in analyzing topology and ultimately multidimensional string theory.



Figure 7. Three closed curves on the surface of a doughnut (torus) illustrate inequivalent and equivalent
closed paths. Curves a and b, which bound the hatched area, can be smoothly distorted into each other,
whereas curve ¢ winds around a different direction and cannot be distorted into a or b, without cutting
and pasting the ends (Figure drawn after Eguchi, Gilkey and Hanson, [20]).

Within the last five to ten years research has uncovered numerous dualities relating different limits and
formulations of string and membrane theories. Greene [27, pp. 231-262] and Duff [19] have discussed
the duality between ordinary vibrational modes and winding modes of a string (see Figure 8).

\

[
m) |

- ordinary vibration modes

winding modes

Figure 8. The ordinary vibration modes of closed strings (above) and the winding modes (below). In the
equations of string theory, these two modes carry energy, and exchange roles when the radius of the
compactified dimension moves from small to large.

A value of the radius for compactified dimensions leads to the same results or equivalent results for a
different radius, in which the winding modes and ordinary vibrational modes change roles in the
equations of the theory [13]. Another type of duality relates the strong coupling limit of one theory to the
weak coupling limit of another. A coupling constant is a number giving the strength with which an
elementary particle is coupled to the field that it experiences. For example the coupling constant for
interaction with the electromagnetic field is the electric charge. In some work by Witten [49] and Lykken
[34], these authors was speculated that, contrary to previous thought (see Kaplunovsky, [32,33]), strong
coupling limits of certain string theories were more relevant to accelerator physics. This led to some more
realistic applications of string theory than had been previously been possible (see Nath and Yamaguchi,
[36]).



COMPACT CIRCUMFERENCES AND COUPLING CONSTANTS

Weinberg [47] used generalized Kaluza-Klein models having 4+N dimensions to find a relation between
coupling constants and the root-mean-square (rms) circumferences of the compactified dimensions. As
discussed in reference [10], the original Kaluza-Klein model had only one extra dimension besides the
usual four of ordinary spacetime. Witten [48] discussed the generalization to the case where there are
more compact dimensions. Weinberg applied this idea to reduce some assumed higher-dimensional
equations of gravitation theory to the four-dimensional case, and worked out the results of his equations
for some simple examples. These examples assign an assumed topology to the compactified
dimensions, and then calculate the rms circumferences. For one example, he assumed that the topology
corresponded to the symmetry group SO(N+1), the group of rotations, contiguous to the "leave-it-alone"
or identity rotation, in N+1 dimensional space.[A group is a set of elements plus a rule of combination of
pairs of elements, satisfying certain requirements, including that every element has an inverse.] This
gave the result for the SO(N+1) coupling constant:

g{ng (N+1)T/2 M

Here, K = 167G, where G is Newton's gravitation constant, R is the radius of this (N+1)-dimensional
shape with topology analogous to that of a sphere. Thus, for a highly symmetrical topology such as this,
all the coupling constants would be the same. In the real world, we know that the strong, electroweak,
and gravitational constants are different, but here we are dealing with a simplified example to illustrate
possible “real” behaviors. Weinberg also considered an example having the symmetry SU(3), the group
of all unitary 3x3 matrices with determinant plus one. In this example there are two different possible
values for coupling constants g and g’
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Thus, the ratio of the two coupling constants is the square root of three, and does not depend on the
radius R of the extra dimensional shape.

Candelas and Weinberg [6] generalized these results to include the effects of quantum fluctuations of
matter fields on the vacuum, and found slightly modified versions of the earlier relations between the radii
R of the compactified dimensions and the coupling constants. They also generalized some
considerations of Rubin and Roth [42] which attempted to relate the radii of the compactified dimensions
to the average temperature of the matter fields contained in the universe.

The change of the compactified radii with temperature can be understood physically through the Casimir
effect [10, 28]. The Casimir effect is a force between two parallel conducting plates caused by
differences in zero-point energy of the electromagnetic field. In a similar manner, at zero temperature,
the gravitational zero-point energy of the Kaluza-Klein ground state leads to the collapse of the fifth
dimension, but in that case we deal with the topology of the compactified dimensions, not with parallel
plates. In the parallel-plate case, if a gas of photons at fixed temperature is introduced between the
plates, the net pressure on the plates will be the sum of two contributions: the positive pressure from
thermal photons, of constant magnitude, and the negative Casimir pressure, varying in inverse proportion
to the fourth power of the plate separation. The negative Casimir pressure arises because the short
distance between the plates prevents standing waves of certain wavelengths from existing between the
plates. If the plates start out close together, the negative Casimir pressure is stronger than that of the
thermal photons and the plates collapse. If they start out at a distance such that the Casimir pressure is
weaker, then the plates will fly apart with nothing to stop the separation. The thermal photon pressure
changes as the plate separation changes, but only as (separation)"”s; i.e. much more slowly than the
Casimir pressure.



Candelas and Weinberg [6], and before them Rubin and Roth [42], attempted to extrapolate from the
parallel-plate case to a realistic Kaluza-Klein model. Such a model would remove the artificial constraints
of an assumed external geometry and an assumed time-independent internal geometry. Realistic models
would also involve more than just one compact dimension with compactification brought about by
vacuum expectation values (VEV's) for non-gravitational fields, and would include fermionic (half-integral
spin) fields. The presence of curvature in both the compact and non-compact dimensions, the response
of the VEV's to changes in temperature, and fermion degeneracy pressure might well all contribute to
behavior very different from that observed in the parallel-plate case.

This idea provides a possible mechanism for changing the radii of the compact dimensions as the
universe expands and its background temperature changes. Early in creation week, it may be that the
mechanism could also work in a young-earth model.

KALUZA-KLEIN EXCITATIONS

In superstring theory, we need to link a 10-dimensional "manifold," which is simply a framework which
can be smoothly described by 10 independent coordinates, with our observed four-dimensional
spacetime. If the extra six dimensions are curled up into a compact space, this simply means that every
point of four-dimensional spacetime has one of these compact six-dimensional spaces associated with it
(In more recent theory, 11 dimensional membranes are wrapped up to make ten-dimensional
superstrings, but that is just an unneeded complication as far as we will be concerned.). If the size of the
compactified six-dimensional space is small compared to the scale of everyday life, we would not directly
detect the effect of these extra dimensions [10, 29].

At high enough energies, higher even than those of the abortive superconducting supercollider, the SSC
- which began but did not complete construction in Texas, a particle accelerator would be likely to detect
the presence of the so-called Kaluza-Klein excitations or Kaluza-Klein modes. In quantum mechanics,
waves are associated with all particles. When we consider string theory, we find that if a spatial
dimension is curled up, then the momentum p associated with the waves wrapping around this
dimension will be quantized, with values p = nh/(2zR), n = 0,1,2,3, . . . , and h is Planck's constant, while
R is the radius of the compactified dimension. In this picture the masses of the quantized excitations, the

masses m_ of the particles, are given by mn2 = mO2 +n2h2/(47z2R202), where m, is the mass of the mode
with zero momentum and c is the speed of light.

Particles can be divided into fermions (half-integral spin) and bosons (integral spin). It is possible that the
fermions or some of the fermions may not have Kaluza-Klein excitations [15]. This is dependent on
exactly how the extra dimensions are compactified. If the fermion corresponds to excitations located at
the fixed points of an orbifold, then no Kaluza-Klein excitations exist. In mathematically precise
formulations of topology, an orbifold is a way of smoothing over or "blowing up" certain fixed points at
which different coordinates must be joined [18].

In the actual multidimensional string theories, we need to make contact with the "real" world of four
spacetime dimensions. The 10-dimensional superstring theory must compactify six of the dimensions on
a six-dimensional compact manifold. Particle physicists have, in the last 15 years, spent a great deal of
time studying just how to do this. Fortunately, mathematicians have been studying topology since the
time of Poincaré in the late 1800's. While they have not fully developed all the machinery needed by the
string theorists, two mathematicians, Eugenio Calabi and Shing-Tung Yau had studied a type of six-
dimensional space, known as a Calabi-Yau space (pronounced cah-lah’-bee-yah'-00) which particle
theories needed [27]. The topology of this space, with the requisite number of "holes," seems to be right
to allow the known quarks and leptons to be described in terms of string theory. The quarks and leptons
are grouped into three "families," which are allowed by these Calabi-Yau shapes. They allow description
in terms of representations of the SU(3)xSU(2)xU(1) group of the so-called standard model.

UNIFIED THEORIES

In 1974 the SU(5) theory of combined strong, weak, and electromagnetic interactions was proposed (see
Georgi and Glashow, [25] and Georgi, Quinn, and Weinberg, [24]). The SU(5) theory receives its name
because it is modeled after five by five special unitary matrices (hence the nickname SU standing for
special unitary), special meaning they have determinant plus one. This theory allowed all the families of
quarks and leptons to be combined into representations of the SU(5) group, which means that we only



needed particles called gluons, W', W, Z’ bosons, and the photon to describe the forces between the
quarks and leptons (Georgi [23] has given a popular-level description of how this theory was
formulated.). Basically, the SU(5) theory had only one "coupling constant." In accord with previous
discussion, "coupling constant" may be thought of as a number which describes how much force
originates from placing particles of known type a certain distance apart. Each type of force has its own
coupling constant, but the SU(5) theory implied that the coupling constants for strong, weak and
electromagnetic forces all originated from a single constant, diverging into their various values as the
energy of the interactions is lowered from high energies down to low energies. The reason for the
divergence of these values has to do with what is called renormalization, and with the effective field
theory which results from performing the renormalization appropriate to a given energy scale. In quantum
field theory, a particle is surrounded by a cloud of virtual particles, which cloud will be penetrated to
varying degrees by a second particle interacting with it [23]. A more energetic particle penetrates further.
For example, a real particle with positive electric charge will be surrounded by pairs of virtual electrons
and positrons. On the average, the virtual positrons are pushed farther away from the real particle, while
the virtual electrons are nearer to it. So on the average, the real particle has more negative charge near
to it than far from it. A second real particle, depending on its energy, will penetrate this cloud to a lesser
or greater degree. For this reason, the effective interaction depends on the particle energy, and the
coupling constant of electromagnetic interactions is less for smaller energies. In the case of the strong
force, the gluons cause the force to get weaker at larger energies [23, p. 432].

Renormalization theory says that not only the coupling constants, but also the masses of particles
appear to vary on different energy scales [37]. While quantum theory connects this effect to varying
energy scales, the basic ideas are actually much older. J.J. Thomson discovered the so-called
electromagnetic mass in 1881 [45]. Thomson correctly noted that a charge moving through a dielectric
experiences a resistance, which is non-dissipative, and hence is best described by an additional
contribution to the mass. The resistance is comparable to that of a sphere moving through a perfect fluid.
Motion of the sphere is impeded by the presence of the fluid. Using James Clerk Maxwell's theory of
electricity and magnetism, Thomson showed that the charged sphere, moving through the dielectric,
would experience an additional mass. Thomson's equation for the new mass mis:
4 e’

m=my+—_
IS5 a (3)

where e is the charge, a is the radius of the sphere, and 4, is the magnetic permeability. While quantum

theory does not assign a radius to the electron, the "vacuum polarization" effect is nevertheless a real
effect [23, p. 434], [5, section 8.2]. In many lab experiments, the particles have low energy and are
nowhere near the large energies that bring out these effects. However, for experiments involving modern
particle accelerators, these effects become evident: the effective coupling constants and effective
masses vary with energy.

The SU(5) theory of Georgi and colleagues had an unfortunate failure. It predicted the decay of the
proton, with a half-life greater than 10* years. As a result of this prediction, experiments were set up to
detect this proton decay, and no conclusive evidence for such decays was found. The half-life of the
proton, if not infinite, was shown to be higher than the range which the SU(5) theory seems to allow.
Other unified theories based on other groups or on string theory are possible, and this is still an active
field of research. For example, Shiu and Tye [43] discussed the possible suppression of proton decay by
an additional symmetry, while Dienes, Dudas, and Gherghetta [16,17] discussed a higher-dimensional
mechanism involving selection rules for the Kaluza-Klein excitations which allow all proton-decay
processes to have vanishing probability. In the SU(5) theory and in similar theories allowing proton
decay, there are particles, either X-bosons or Higgs particles, which are responsible for the proton's
decay. In the Dienes, Dudas and Gherghetta theory, however, the proton does not have Kaluza-Klein
excitations which leads to a zero probability for its decay (Technically, the proton is said to be restricted
to the fixed points of an orbifold, at which point the probability for interacting with the X-bosons or Higgs
particles is zero.). Of course, these theories are untested at present, so the correct explanation for the
lack of proton decay is still undecided.

Unfortunately, this also leaves open the question of whether or not the SU(5) theory was correct in
predicting that there is only one coupling constant at high energies. If the radii of compactified
dimensions varied over the early history of creation, then a related question also seems to be
unanswered for us. Could the rates of alpha and beta decay vary relative to each other over the history
of the universe? This is an interesting question, and needs to be answered in order to correctly interpret
radioisotope data A start in this direction will be provided in the next section.



KALUZA-KLEIN EXCITATIONS AND THE FERMI COUPLING CONSTANT

Nath and Yamaguchi [36], considered the question of whether Kaluza-Klein excitations contribute to the
so-called Fermi constant, which determines the fundamental rates of beta decays. Enrico Fermi, the
Italian-American of the Manhattan project, was responsible for the first realistic theories of beta decay, so
this coupling constant G_, as applied in beta decay theory, is named after him. For the case of one extra

dimension, Nath and Yamaguchi showed that to leading order in the ratio of the W boson mass M, to the
mass proportional to 1/R (the compactification scale mass M,), the effective Fermi constant GeﬁF is given
by

2 2
. 7wt M,
G ;GgM(H? M”g)
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Here, GFSM is the value of the Fermi constant, which may be calculated from the standard model of

quantum field theory (Nath and Yamaguchi [36] comment that the standard model agrees very well with
experiment) without any assumptions about extra dimensions. For the case of more than one extra
dimension, Nath and Yamaguchi derived a simple formula similar to the above but depending on the
extra dimensions. From the results of standard model calculations, plus experimental measurements [1,

46], Nath and Yamaguchi showed that the energy MR02 was at least 1.6 TeV. This encourages particle
physicists to hope that, with the completion of the Large Hadron Collider (LHC), expected in 2006 or so,
evidence for these extra dimensions may be found (see Kane [31] for a semi-fictitious account of
expectations).

Now, because we are interested in the possibility of accelerated decay in the early universe, we need to
take the discussion a step further than Nath and Yamaguchi did. In their paper, they only considered
present-day measurements. Because of our interest in explaining radioisotope data in terms of a young
earth, we may think as follows. If, over the early history of the universe, the radius of compact
dimensions should change, then so would the mass scale M_, and hence the value of the Fermi

constant. Under the simplifying assumption that other factors in the equation do not change as radically
as M_ does, decreases in the sizes of extra dimensions would increase M_, and hence decrease the

values of G... This in turn would mean that half-lives for beta decays of nuclei would become larger as the

extra dimensions became smaller. Thus, one would expect accelerated decay to have occurred early in
the history of the creation.

CONCLUSION

A straightforward biblical interpretation does not rule out a period of accelerated decay early in creation
week. Since life does not appear until some time on day three, the cessation of the accelerated decay at
that point prevents life from receiving abnormally large radiation doses. The models presented depend
on the compactification of extra dimensions, with the compactification being completed early in creation
week. Other models may lead to accelerated decay at other points, for instance during the Fall of
Genesis 3 or during the Flood of Noah, but it would seem that these other episodes would probably have
to be explained using alternative models, and could not allow as much accelerated decay as could be
accommodated early in creation week.

Since God is the origin of physical principles, it would be wrong to state that He must act in a certain
way. However, Scripture is a reliable record of His actual creation. The models considered here merely
point out some unnecessary assumptions involved in interpreting radioactive decay: half lives may not
have been constant.

Although extended Kaluza-Klein and string theories must be considered as highly tentative theories, in
this work we find some explicit equations showing the variation of the Fermi constant. These results
enable one to conjecture about how much the variation must have been in order to explain present-day
isotopic abundances. Since there is no precise number to match with theory, and since various
approaches to the final, present-day abundances are possible, these results remain explanatory in
nature. Perhaps future studies will be able to connect more precisely with the data.
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