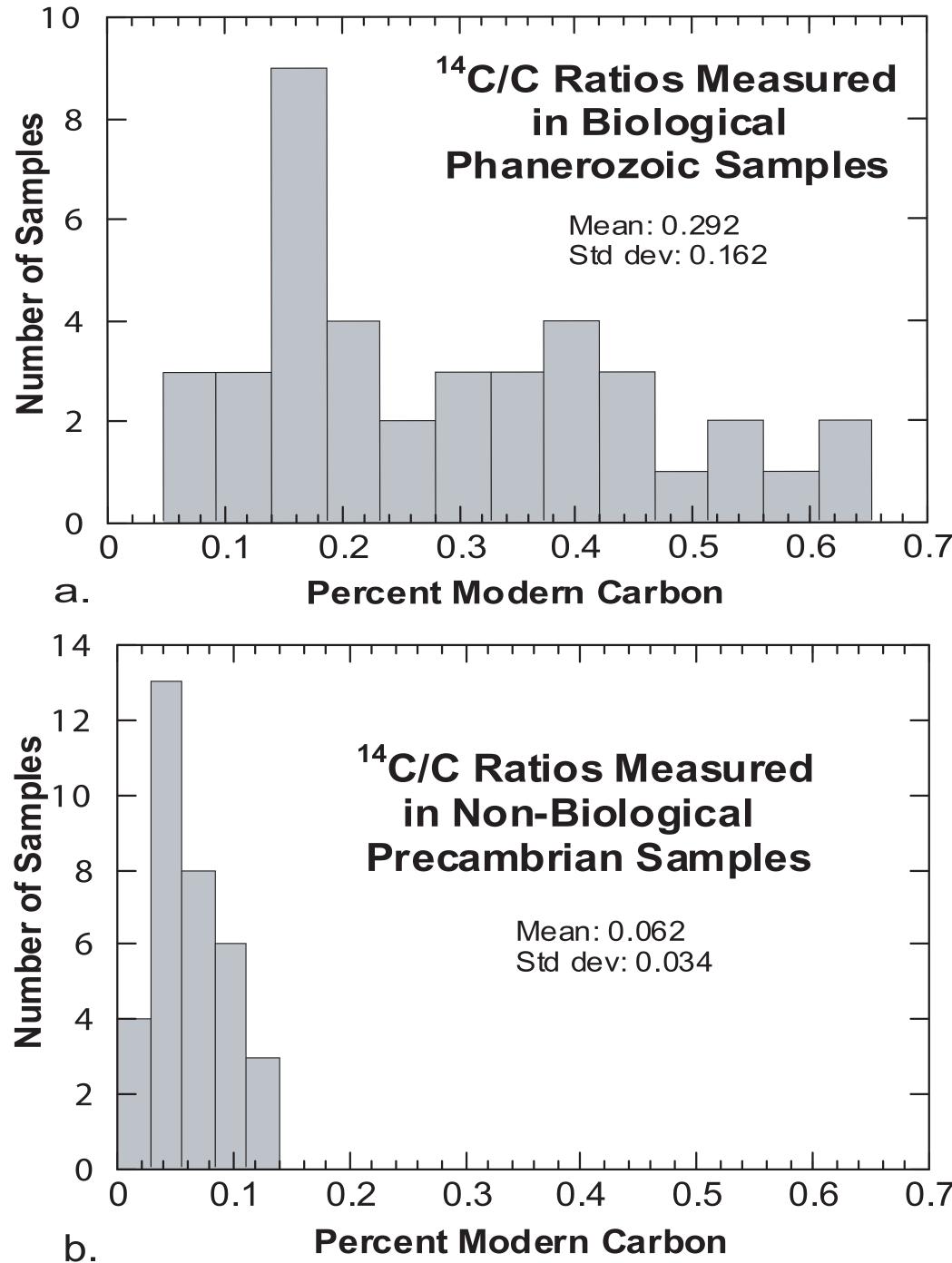
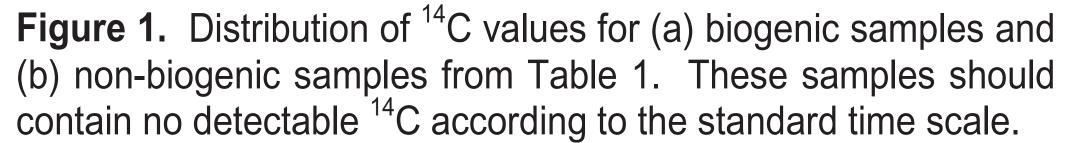
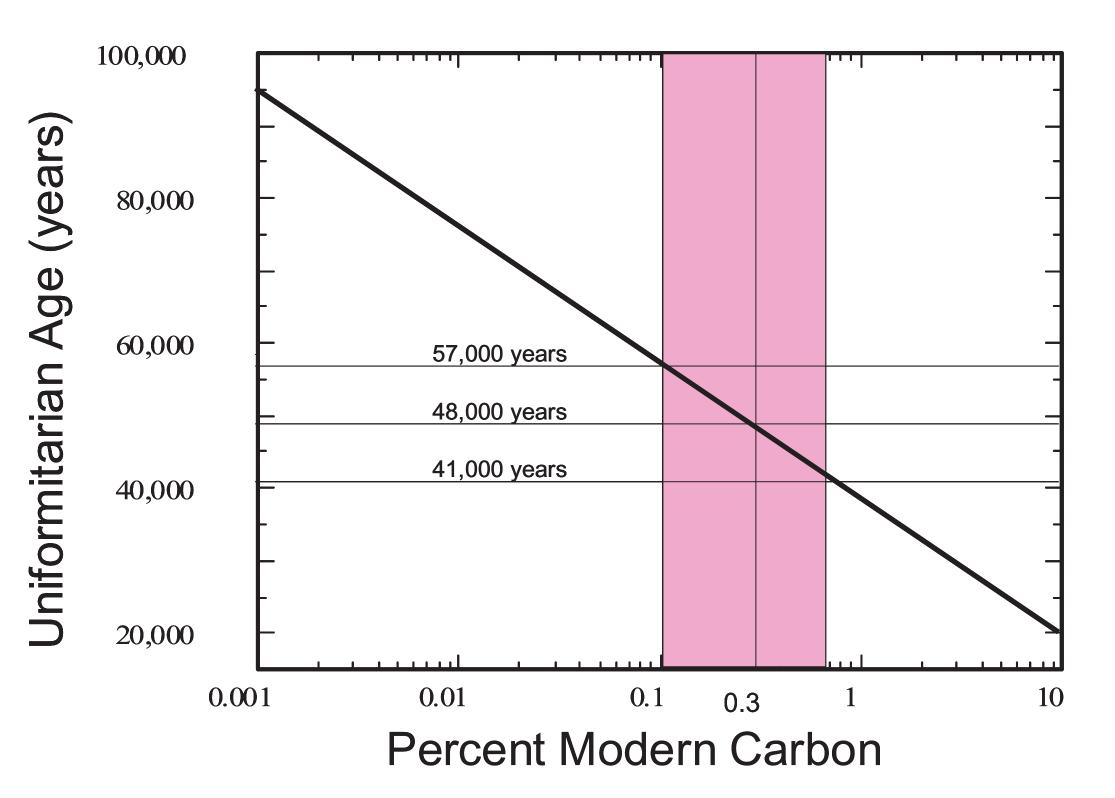
The Enigma of the Ubiquity of¹⁴ C in Organic Samples Older Than 100 ka John R. Baumgardner, Los Alamos National Laboratory, MS B216, Los Alamos, NM 87544, USA **D. Russell Humphreys**, Institute for Creation Research, 10946 Woodside Avenue N., Santee, CA 92071, USA Andrew A. Snelling, Geo-Research Pty Ltd, P.O. Box 1208, Springwood, Queensland, 4127, Australia Steven A. Austin, Institute for Creation Research, 10946 Woodside Avenue N., Santee, CA 92071, USA

ABSTRACT


Given the 5730 year ¹⁴C half-life, organic materials older than 200,000 years (35 half-lives), should contain absolutely no detectable ¹⁴C. (One gram of modern carbon contains about 6 x 10^{10 14}C atoms, and 35 half-lives of decay reduces that number by a factor of 3 x 10^{-11} .) An astonishing discovery made over the past twenty years is that, almost without exception, when tested by highly \overline{g} 6 sensitive accelerator mass spectrometer (AMS) methods, organic samples from every portion of the Phanerozoic record display ¹⁴C/C ratios far above the AMS detection threshold of 0.001 percent modern carbon (pmc). ¹⁴C/C ratios from all but the youngest Phanerozoic samples appear to be clustered in the range 0.1-0.5 pmc, corresponding to ¹⁴C ages of 44,000-57,000 years, regardless of geological 'age.' An inference that can be drawn from these observations is that all but the very youngest Phanerozoic organic material was fossilized less than 70,000 years ago. When one accounts for the significant amount of biomass involved, the AMS measurements are consistent with the time scale from historical accounts of a global cataclysm that destroyed most of the air-breathing life on the planet only a few millennia into the past.


AMS measurements on samples conventionally deemed ¹⁴C 'dead'. These Table 1. measurements were performed in various laboratories around the world and reported mostly in the journals Radiocarbon and Nuclear Instruments and Methods in Physics Research B.


	-					-
	¹⁴ C/C (pmc) (±1 S.D.)	Material	Reference		¹⁴ C/C (pmc) (±1 S.D	Material
1	0.71±?	Marble	Aerts-Bijma et al. [1997]	46	0.152±0.025	Wood
2	0.65±0.04	Shell	Beukens [1990]	47	0.142±0.023	Anthracite
3	0.61±0.12	Foraminifera	Arnold et al. [1987]	48	0.142±0.028	CaC2 from coa
4	0.60±0.04	Commercial graphite	Schmidt et al. [1987]	49	0.140±0.020	Marble
5	0.58±0.09	Foraminifera (Pyrgo)	Nadeau et al. [2001]	50	0.130±0.030	Shell (Mytilus)
6	0.54±0.04	Calcite	Beukens [1990]	51	0.130±0.009	Graphite
7	0.52±0.20	Shell (Spisula)	Nadeau et al. [2001]	52	0.128±0.056	Graphite
8	0.52±0.04	Whale bone	Jull et al. [1986]	53	0.125±0.060	Calcite
9	0.51±0.08	Marble	Gulliksen & Thomsen [1992]	54	0.120±0.030	Foraminifera
10	0.50±0.10	Wood	Gillespie & Hedges [1984]	55	0.112±0.057	Bituminous coa
11	0.46±0.03	Wood	Beukens [1990]	56	0.10 ±0.01	Graphite (NBS
12	0.46±0.03	Wood	Vogel et al. [1987]	57	0.10 ±0.05	Petroleum
13	0.44±0.13	Anthracite	Vogel et al. [1987]	58	0.098±0.009	Marble
14	0.42±0.03	Anthracite	Grootes et al. [1986]	59	0.092±0.006	Wood
15	0.40±0.08	Foraminifera	Schleicher et al. [1998]	60	0.09-0.18 (ra	nge) Graphite
16	0.40±0.07	Shell (Turitella)	Nadeau et al. [2001]	61	0.09-0.13 (ra	nge) CO2
17	0.38±0.05	Wood (charred)	Snelling [1997]	62	0.089±0.017	Graphite
18	0.36±0.03	Anthracite	Beukens et al. [1992]	63	0.081±0.019	Anthracite
19	0.35±0.03	Shell (Varicorbula)	Nadeau et al. [2001]	64	0.08 ±?	Natural Graph
20	0.34±0.04	Wood	Beukens et al. [1992]	65	0.080±0.028	Cararra marble
21	0.34±0.11	Recycled graphite	Arnold et al. [1987]	66	0.077±0.005	Natural Gas
22	0.32±0.06	Foraminifera	Gulliksen & Thomsen [1992]	67	0.076±0.009	Marble
23	0.30±?	Coke	Terrasi et al. [1990]	68	0.074±0.014	Graphite
24	0.30±?	Coal	Schleicher et al. [1998]	69	0.07 ±?	Graphite
25	0.26±0.02	Marble	Schmidt et al. [1987]	70	0.068±0.028	Calcite
26	0.23±0.06	Carbon powder	McNichol et al. [1995]	71	0.068±0.009	Graphite
27	0.23±0.04	Foraminifera (mixed)	Nadeau et al. [2001]	72	0.06-0.11 (rai	nge) Graphite
28	0.21±0.02	Fossil wood	Beukens [1990]	73	0.056±?	Wood
29	0.21±0.02	Marble	Schmidt et al. [1987]	74	0.05 ±0.01	Carbon
30	0.21±0.06	CO2	Grootes et al. [1986]	75	0.05 ±?	AMS Carbon-1
31	0.20-0.35	(range) Anthracite	Aerts-Bijma et al. [1997]	76	0.045±?	Graphite
32	0.20±0.04	Shell (Ostrea)	Nadeau et al. [2001]	77	0.04 ±?	Graphite
33	0.20±0.04	Shell (Pecten)	Nadeau et al. [2001]	78	0.04 ±0.01	Graphite (Finla
	0.20±0.10*		Donahue et al. [1997]	79	0.04 ± 0.02	Graphite
35	0.20±0.06	Carbon powder	McNichol et al. [1995]	80	0.04 ±0.02	Graphite (Ceyle
36	0.18±0.05	(range?) Marble	Van der Borg et al. [1997]	81	0.036±0.005	Graphite
		Whale bone	Gulliksen & Thomsen [1992]	82	0.033±0.013	Graphite
	0.18±0.03		Gulliksen & Thomsen [1992]	83	0.03 ±0.015	Carbon
	0.18±0.01*		Nelson et al. [1986]		0.030±0.007	•
		Recycled graphite	Van der Borg et al. [1997]	85	0.029±0.006	Graphite
		Natural gas	Gulliksen & Thomsen [1992]	86	0.029±0.010	Graphite
		Foraminifera	Schleicher et al. [1998]		0.02 ±?	Carbon powde
	0.162±?	Wood	Kirner et al. [1997]		0.019±0.009	•
	0.16±0.03		Gulliksen & Thomsen [1992]		0.019±0.004	•
45	0.154±?*	Anthracite	Schmidt et al. [1987]		0.014±0.010	
				*L(owest value of	multiple dates

Reference

Beukens [1990] Vogel et al. [1987] Gurfinkel [1987] Schleicher et al. [1998] Nadeau et al. [2001] Gurfinkel [1987] Vogel et al. [1987] Vogel et al. [1987] Nadeau et al. [2001] Kitagawa et al. [1993] Donahue et al. [1997] Gillespie & Hedges [1984] Schleicher et al. [1998] Kirner et al. [1995] Aerts-Bijma et al. [1997] Aerts-Bijma et al. [1997] Arnold et al. [1987] Beukens [1992] Graphite Donahue et al. [1997] Nadeau et al. [2001] Beukens [1992] Gas Beukens [1992] Kirner et al. [1995] Kretschmer et al. [1995] Nadeau et al. [2001] Schmidt et al. [1987] Nakai et al. [1984] phite Kirner et al. [1997] Wild et al. [1998] Schmidt, et al. [1987] arbon-12 Grootes et al. [1986] Aerts-Bijma et al. [1997] (Finland) Bonani et al. [1986] Van der Borg et al. [1997] (Ceylon) Bird et al. [1999] Schmidt et al. [1987] Kirner et al. [1995] Schleicher et al. [1998] Schmidt et al. [1987] Schmidt et al. [1987] Schmidt et al. [1987] Pearson et al. [1998] Nadeau et al. [2001] Schmidt et al. [1987] Beukens [1993]

Figure 2. Uniformitarian age as a function of ¹⁴C/C ratio in percent modern carbon (pmc). The uniformitarian approach for interpreting the ¹⁴C data assumes a constant ¹⁴C production rate and a constant biospheric carbon inventory extrapolated into the indefinite past. It does not account for the possibility of a recent global catastrophe that removed a large quantity of carbon from the biospheric inventory. Purple band shows range of values for most ¹⁴C dead biological samples.

Note: The detection limit for the AMS method is about one ¹⁴C atom for every 10¹⁷ ¹²C atoms, or an absolute ¹⁴C/¹²C ratio of 10⁻¹⁷. Since the modern ¹⁴C/¹²C ratio in living things is about 10⁻¹², the AMS method can measure ratios potentially as low as about 10⁻⁵ times (0.001%) the modern ratio, or 0.001 pmc.

Given the substantial evidence for levels of ¹⁴C hundreds of These large samples were then processed to obtain times the AMS detection threshold in biological materials representative 300 g samples with 0.85 mm particle size (20) throughout the Phanerozoic record, our team decided to mesh), sealed under argon in foil bags and have since been undertake its own investigation of this phenomenon. We kept in refrigerated storage at 3°C. We selected ten of the selected ten samples from the U.S. Department of Energy 33 coals available with an effort to obtain good Coal Sample Bank maintained at Penn State University. representation geographically as well as with respect to The coals in this bank are intended to be representative of depth in the geological record. Our ten samples included the economically important coalfields of the United States. three Eocene, three Cretaceous, and four Pennsylvanian The original samples were collected from recently exposed coals. We chose one of the foremost AMS laboratories in areas of active mines, placed in 30-gallon steel drums with the world to perform our analyses. high-density gaskets, and purged with argon.

Fable 2. Results of AMS ¹⁴C analysis of 10 DOE coal samples. These measurements were performed using the laboratory's high precision procedure, with four AMS runs per sample, the results of which were combined as a weighted average and then reduced by 0.077±0.005 pmc to account for a standard background believed to be from sample processing contamination.

Sample	Coal Seam	State	County	Geological Interval	¹⁴ C/C (pmc)
DECS-1	Bottom	Texas	Freestone	Eocene	0.30±0.03
DECS-11	Beulah	North Dakota	Mercer	Eocene	0.20±0.02
DECS-25	Pust	Montana	Richland	Eocene	0.27±0.02
DECS-15	Lower Sunnyside	Utah	Carbon	Cretaceous	0.35±0.03
DECS-16	Blind Canyon	Utah	Emery	Cretaceous	0.10±0.03
DECS-28	Green	Arizona	Navajo	Cretaceous	0.18±0.02
DECS-18	Kentucky #9	Kentucky	Union	Pennsylvanian	0.46±0.03
DECS-21	Lykens Valley #2	Pennsylvania	Columbia	Pennsylvanian	0.13±0.02
DECS-23	Pittsburgh	Pennsylvania	Washington	Pennsylvanian	0.19±0.02
DECS-24	Illinois #6	Illinois	Macoupin	Pennsylvanian	0.29±0.03

Averaged over geological interval, the AMS determinations yield remarkably similar values of 0.26 pmc for the Eocene, 0.21 pmc for the Cretaceous, and 0.27 pmc for the Pennsylvanian samples.

¹⁴C Detected in Natural Diamond !

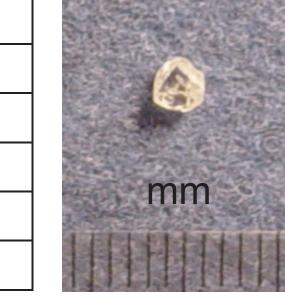
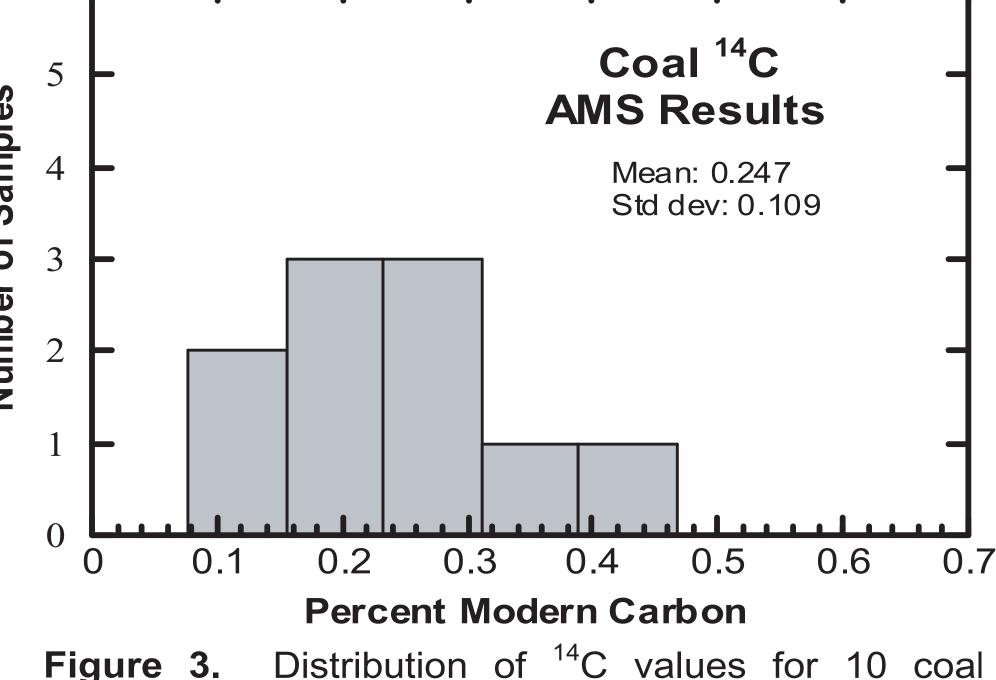
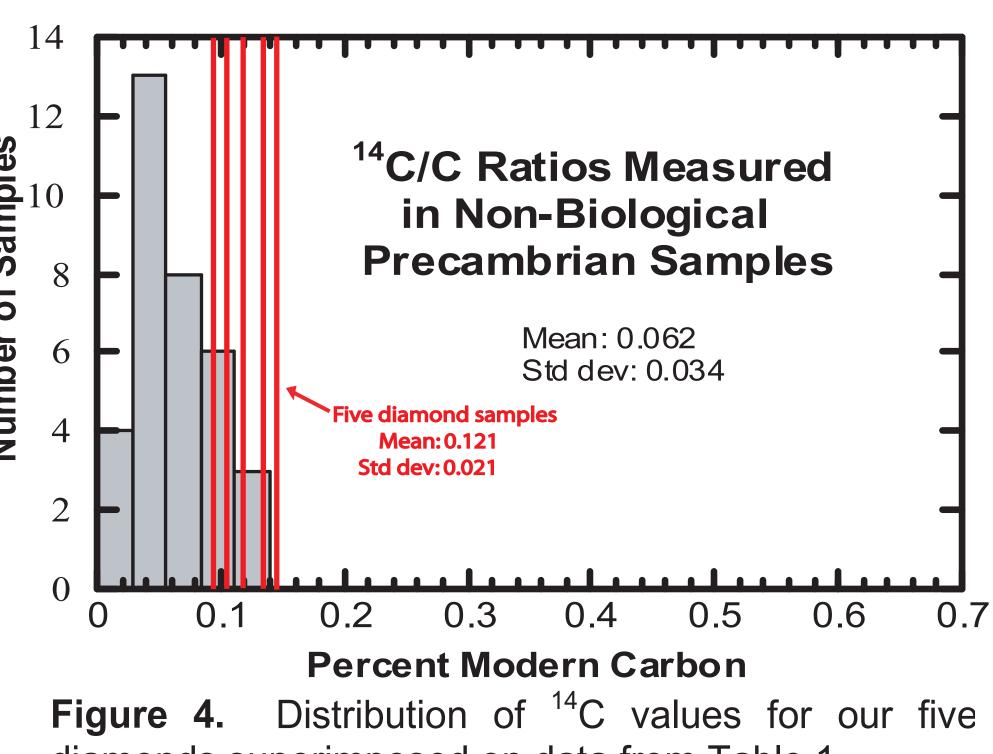

The fact that most of the reported Precambrian inorganic carbon measurements display levels of ¹⁴C well above the AMS detection threshold motivated our team to test several samples of natural diamond using the same high precision procedures applied to the coal samples. The results are shown in Table 3 and Figure 4. We obtained a mean value of 0.121 pmc and a standard deviation of 0.021 pmc for our five diamonds.

Table 3. AMS ¹⁴C results for five African diamonds. The lab's high precision procedure was applied, but no standard background has been subtracted.


-	• •	•			
Sample ID	Locality	Country	¹⁴ C/C (pmc)		
Orapa-A	Orapa mine	Botswana	0.138±0.026		
Orapa-F	Orapa mine	Botswana	0.105±0.031		
Letlhk-1	Letlhakane mine	Botswana	0.120±0.032		
Letlhk-3	Letlhakane mine	Botswana	0.146±0.024		
Kmbrl-1	Kimberley	South Africa	0.096±0.026		
	J		0.000=0.010		

CONCLUSIONS


The careful investigations performed by scores of researchers in more than a dozen AMS facilities in several countries over the past twenty years to attempt to identify and eliminate sources of contamination in AMS¹⁴C analyses have, as a by-product, served to establish beyond any reasonable doubt the existence of intrinsic ¹⁴C in remains of living organisms from all portions of the Phanerozoic record. Such samples, with 'ages' from 1-500 Ma as determined by other radioisotope methods applied to their geological context, consistently display ¹⁴C levels that are far above the AMS machine threshold, reliably reproducible, and typically in the range of 0.1-0.5 pmc. But such levels of intrinsic ¹⁴C represent a momentous difficulty for uniformitarianism. A mere 230,000 years corresponds to 40¹⁴C half-lives. One gram of modern carbon contains 6 x 10^{10} ¹⁴C atoms, and 40 half-lives worth of decay reduces that number by a factor of 9 x 10^{-13} . Not a single atom of ¹⁴C should remain in a carbon sample of this size after 230,000 years (not to mention one million or 50 million or 250 million years). A glaring (thousand-fold) inconsistency that can no longer be ignored in the scientific world exists between the AMS-determined ¹⁴C levels and the corresponding rock ages provided by ²³⁸U, ⁸⁷Rb, and ⁴⁰K techniques. We believe the most likely explanation for this inconsistency to be the invalidity of uniformitarian assumption of time-invariant decay rates. Other research undertaken by our group supports this conclusion [1, 2, 3, 4]. The fact that ¹⁴C is readily detected throughout the Phanerozoic part of the geological record argues the half billion years of time uniformitarians assign to this portion of earth history is likely incorrect. The relatively narrow range of ¹⁴C/C ratios further suggests the Phanerozoic organisms may all have been contemporaries and that they perished simultaneously in the not so distant past.

Orapa diamond

samples from Table 2. These samples should contain no detectable ¹⁴C according to the standard time scale. Note the measured ¹⁴C levels are a hundred times or more the AMS threshold of 0.001 pmc.

diamonds superimposed on data from Table 1. We note there are strong indications that ¹⁴C currently exists in environments sealed from biospheric interchange since very early in earth history. In summary, AMS ¹⁴C measurements

raise nontrivial questions concerning the uniformitarian assumption of the constancy of nuclear decay rates and concerning the standard uniformitarian interpretation of the geological record.

REFERENCES

-] Baumgardner, J. R., A. A. Snelling, D. R. Humphreys, and S. A. Austin, "Measurable ¹⁴C in fossilized organic materials: confirming the young earth creation-Flood model," in Proceedings of the Fifth International Conference on Creationism, R. L. Ivey, Jr., Editor, Creation Science Fellowship, Pittsburgh, PA, 127-142, 2003, <u>http://www.icr.org/research</u>.
-] Humphreys, D. R., S. A. Austin, J. R. Baumgardner, and A. A. Snelling, "Helium diffusion rates support accelerated nuclear decay," in Proceedings of the Fifth International Conference on Creationism, R. L. Ivey, Jr., Editor, Creation Science Fellowship, Pittsburgh, PA, 175-196, 2003, http://www.icr.org/research.
- [3] Snelling, A. A. and M. H. Armitage, "Radiohalos a tale of three granitic plutons," in Proceedings of the Fifth International Conference on Creationism, R. L. Ivey, Jr., Editor, Creation Science Fellowship, Pittsburgh, PA, 243-268, 2003, http://www.icr.org/research.
- [4] Baumgardner, J. R., "Catastrophic plate tectonics: the physics behind the Genesis Flood," in Proceedings of the Fifth International Conference on Creationism, R. L. Ivey, Jr., Editor, Creation Science Fellowship, Pittsburgh, PA, 113-126, 2003, http://www.icr.org/research.