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ABSTRACT

The physics of Dr. Russell Humphreys� new cosmological model
presented in Starlight and Time is profoundly flawed and the conclusions
drawn from this model are seriously mistaken.  An accurate treatment of
the physics indicates that this model is actually a trivial variant of the
standard Big Bang model, with its attendant implications for the age of the
Universe and the Earth time required for light to travel from distant galaxies
to the Earth.

1. INTRODUCTION

Dr D. Russell Humphreys� Starlight and Time:
Solving the Puzzle of Distant Starlight in a Young
Universe1 purports to solve the light-travel-time problem
in a way which is compatible with astronomical
observations of the Universe and the General Theory of
Relativity, the best present description of gravity and the
structure of the Universe.  Humphreys alleges that his
alternative cosmology lifts from the neck of the young-
Universe movement the doubly burdensome yoke of the
light-travel problem and the movement�s past denials of
the validity of General Relativity, a very thoroughly tested
and proven theory.

The arguments presented in Starlight and Time sound
ingenious and are attractively presented, but they are flawed
in ways which are so serious as to totally invalidate them.
These flaws centre around a series of misunderstandings
about the meaning of General Relativity concepts and the
interpretation of cosmological models based on General
Relativity.  When these misunderstandings are corrected it
is found that the approach to cosmology advocated in
Starlight and Time leads to the same time-scale
conclusions as standard Big Bang cosmology.  The model
of Starlight and Time is in fact a trivial variant of the Big
Bang model.

The misunderstandings exhibited in Starlight and
Time may be grouped into several clusters.  The body of
this paper is organised into sections correcting each of these
sets of misunderstandings.  The first set centres around the
�Cosmological Principle�, or the �Copernican Principle�.
Starlight and Time affirms, wrongly, that the long-time-
scale implications of Big Bang cosmology theory are
crucially dependent on the global validity of this principle/
assumption and that the relaxation of this assumption,
through the introduction of a boundary to the matter of the

Universe, produces dramatic differences in the gravitational
properties of the Universe.  In fact, the gravitational
properties of the visible part of the Universe are identical
for unbounded and spherical bounded models regardless
of the validity of the Copernican Principle in more distant
regions.  A second cluster of misunderstandings centres
around the nature of time in cosmological models.
Starlight and Time affirms, wrongly, that the physical
clock synchronisation properties which occur in the
standard Big Bang model are due to the boundary
conditions implied by the Copernican principle and that
modification of these boundary conditions can change the
way that physical clocks behave in the Universe.  In fact,
physical clocks located on Earth and on distant galaxies
behave identically in bounded and unbounded Universes
which have identical interior matter distributions.  A third
set of misunderstandings centres around the nature and
effects of event horizons in the Universe.  Starlight and
Time affirms, wrongly, that observers who pass through
event horizons observe dramatic changes in the rate of time
passage in distant parts of the Universe.  In fact, no such
changes are observed;  the distant-clock time phenomena
observed in a bounded Universe are identical to those
observed in an unbounded Universe.  A fourth cluster of
misunderstandings centres around the observable
consequences of this model.  Starlight and Time and other
of Humphreys� writings affirm, wrongly, that this model
can be adjusted to accurately predict observed phenomena
while limiting the passage of time on Earth, since the
beginning of the Universe, to only a few thousand years.
In fact, the short-time-scale expansion proposal has
profound and easily testable consequences which are not
observed.  Examination of a number of these phenomena
demonstrates that the short-time-scale cosmic expansion
and short-time light travel from distant galaxies proposed
in Starlight and Time did not occur in the history of the

Papers

CEN Tech. J., vol. 12, no. 2, 1998174



CEN Tech. J., vol. 12, no. 2, 1998 175

PapersStarlight and Time — Conner and Page

real Universe.
The physical model of the Universe presented in

Starlight and Time, a locally homogeneous and isotropic
spherical matter distribution, is possible, and in fact was
proposed more than 20 years prior to the unveiling of
Starlight and Time in 1994.2 The young-Universe
interpretations which Humphreys derives from this model
are, however,  mistaken.  The time-scale implications of
the bounded cosmology of Starlight and Time are
identical to the standard Big Bang model.

Before proceeding to the substance of our rebuttal of
Starlight and Time, it is important to state the physical
and mathematical assumptions on which this rebuttal
depends.  We assume that:
(1) General Relativity is an accurate description of gravity;
(2) gravity is the most important force acting over

cosmologically large distances, so that the conventional
application of General Relativity to cosmology theory
is valid;

(3) the fundamental parameters of nature, such as the
gravitational constant G and the speed of light c, are
invariant over the observable history of the Universe;

(4) the visible region of the Universe is approximately
homogeneous and isotropic on large distance scales;
and

(5) the events which we witness by the light of distant
galaxies and quasi-stellar objects are real events and
not appearances impressed onto the Universe by the
intention of the Creator.

Assumption (1) is an established fact,3 there is excellent
evidence for assumptions (2) through (4), and assumption
(5) is a metaphysical postulate which is necessary if one is
to �do� cosmology at all.  Humphreys agrees explicitly or
implicitly with all five of these assumptions.4  The
assumption which may attract the most scepticism from
readers of this journal is (3), in particular the invariance of
c.  The hypothesis that c was much larger in the past is a
common view in the young-Universe movement and is, in
fact, a competing solution to the light-travel-time problem.
However, there is compelling evidence, overlooked by the
originators and promoters of the declining-c hypothesis,
that c has not varied significantly in the past on Earth, and
persuasive evidence that it has not varied in the past at
distant galaxies.5

Humphreys claims that it is possible to build
cosmological models which satisfy these five assumptions
and which are also compatible with the short time-scales
required by young-Universe interpretations of the Bible.
Starlight and Time purports to show how to build such
models.  As we shall show below, the approach to
cosmology advocated in Starlight and Time fails and no
plausible variation of it can succeed.

Readers not familiar with the concepts and the
mathematical apparatus of General Relativity may find
parts of the following discussion obscure.  We have
prepared a much more �user-friendly� version of this paper

titled �The Big Bang Cosmology of Starlight and Time�,
but henceforth referred to simply as �the Supplement�.6  The
Supplement is much longer than the present article, is less
terse and is equipped with an extensive set of explanatory
and supplementary appendices which will be helpful to
readers not familiar with General Relativity and its
application to cosmology theory.  It also discusses
numerous additional errors in Starlight and Time which
cannot be mentioned in this paper due to lack of space.
Readers interested in the Supplement should write to the
address given in reference 6.

2. MISUNDERSTANDINGS ABOUT THE
SIGNIFICANCE OF THE

COSMOLOGICAL PRINCIPLE

The �Copernican Principle� or �Cosmological
Principle� is an assumption which was adopted in the early
years of General Relativity-based cosmology theory in
order to render tractable the mathematical problem of
applying General Relativity to the structure of the
Universe.7  The assumption is that the Universe is, on large
scales, very smooth and that there are no preferred
directions in the Universe � homogeneity and isotropy.
One of the consequences of the Cosmological Principle is
that, if it is valid globally (throughout the Universe) as
opposed to locally (only in the region of the Universe visible
from Earth), then the Universe is unbounded.  The central
contention of Starlight and Time is that the long-time-
scale consequences of Big Bang cosmology are the fault
of this unbounded feature of globally homogeneous and
isotropic universes.  The book lays considerable emphasis
on the widespread acceptance of this assumption among
cosmologists, and criticises professional cosmology
theorists and popular science writers for uncritically
adopting this hypothesis.  Much of the remainder of the
book is devoted to  attempting to demonstrate that the
relaxation of the global validity of the Cosmological
Principle through the introduction of a spherical boundary
to the matter of the Universe completely changes the
gravitational properties of the Universe and overthrows the
long time-scale implications of standard cosmology theory.

This argument of Starlight and Time is mistaken.  The
global validity of the Cosmological Principle is not
necessary for standard cosmology theory to be valid as a
description of the Universe visible from Earth.  This has
been recognised for decades and is especially prominent
in recent work on inflationary cosmology.  The imposition
of a spherical boundary to the matter of the Universe has
no effect on the gravitational and clock time-keeping
properties in the interior of such a boundary.

2.1 Misunderstanding About Cosmologists’
Acceptance of the Cosmological Principle
To begin with, Starlight and Time misrepresents

professional cosmology theorists� views of the
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Cosmological Principle.  The fact of the matter is that
theorists do not, in general, believe that it must apply to
the entire Universe.  Examples of this can be found in recent
graduate-level textbooks on General Relativity and
cosmology, for example,8,9 and even in some popular
writing.10  It is true that not every text mentions this fact,
and it is probably the case that some, perhaps many, of the
authors of older textbooks who do not mention this fact
believed that the Cosmological Principle was globally valid.
The silence of these earlier works does not establish
Humphreys� claims, however.  Present-day cosmology
theorists readily acknowledge the possibility that the
Universe may be very inhomogeneous at very large
distances or on very large distance scales.  As a single
example of this we cite an important recent paper on the
very large-scale structure of the Universe:

�. . . one of the main principles of the big bang theory
is the homogeneity of the Universe.  The assertion of
homogeneity seemed to be so important that it was
called �the cosmological principle�.  Indeed, without
using this principle one could not prove that the whole
universe appeared at a single moment of time, which
was associated with the big bang.  So far, inflation
remains the only theory which explains why the
observable part of the Universe is almost
homogeneous.  However, almost all versions of
inflationary cosmology predict that on a much larger
scale the Universe should be extremely
inhomogeneous, with energy density varying from the
Planck density [≈1094 g/cm3] to almost zero.�11

(Emphasis in original)
Despite the global inhomogeneity discussed by this author,
he affirms that the local, observable part of the Universe is
well-described by standard Big Bang theory.12  This citation
and the other references show that Starlight and Time is
mistaken in its assertions about cosmology theorists�
reliance on the global validity of the Cosmological
Principle.  Modern cosmology theorists do not believe in
the model of the Universe which Humphreys critiques.
Despite this, these theorists still affirm, with good reason,
that general relativistic cosmology theory implies that the
Universe is very old.

The bounded cosmology proposed in Starlight and
Time is not the innovation it has been represented to be.13

It is nearly identical in its most important features to the
model proposed in 1971 by Oskar Klein.2  Klein�s model,
like Humphreys�, is spherical, bounded and starts in a state
of contraction.  Also, like Humphreys� model, Klein�s
model is motivated by dissatisfaction with the
Cosmological Principle.  The principal differences are that
Klein�s model does not have an optically thick boundary,
employs a different method for reversing the initial
contraction, has a different explanation for the cosmic
microwave background, and permits the Earth to be not at
the centre.  Regarding the differences between his bounded
model and the standard unbounded Big Bang model, Klein

writes:
�Although there is hardly any difference between a
cosmological Friedmann [that is, a standard unbounded
Big Bang] solution and a bounded one so long as
observations are not approaching the border [which
would reveal a deficit of galaxies beyond the edge of
the matter] and the extrapolations backward in time
do not approach the state of the so-called fireball, the
difference becomes significant when these conditions
are not satisfied;  in fact, it is enormous at the early
stage assumed for the fireball . . .�14

The �fireball� state Klein mentions is the hot, dense state
in which primordial nucleosynthesis occurs in the standard
Big Bang model, when the Universe is about 1010 times
smaller than its present size, with densities of order 104 g/
cm3 and temperatures of order 1010 K.  Klein�s model does
not resemble the Big Bang at this early stage because
radiation can escape from the Universe through the
boundary, resulting in greater cooling at the edge than at
the centre, so that the Universe does not remain radially
homogeneous.  At late times (Z < 1100), when radiation
plays an insignificant role in the dynamics of the Universe,
there is, in Klein�s words, �hardly any difference� between
his bounded model and the standard unbounded model.
Humphreys avoids the excessive early cooling which would
occur in Klein�s model, if extrapolated back to the fireball
state, by postulating an optically thick boundary, which
absorbs and re-emits into the interior the radiation which
escapes from Klein�s model.  In such a case, there is hardly
any difference between the observable behaviour and
properties of the bounded and unbounded cases at any time.

The problem of Starlight and Time and the debate
surrounding it can be summarised thus:  either Humphreys
is right that boundaries matter, in which case many past
and present-day cosmology theorists have committed a
colossal intellectual blunder in admitting global
inhomogeneity but not recognising its implications for the
time-scale of the visible Universe, or else the cosmology
theorists are right and Humphreys is mistaken � non-local
inhomogeneity is irrelevant.  As we shall see, the answer
to this problem is the second case;  the boundary conditions
do not matter.  For this reason, cosmology theorists do not
pay attention to them when studying the part of the Universe
which we can observe from Earth.  The visible Universe is
very nearly homogeneous and isotropic on large scales,6,15

and this is sufficient for the results of standard cosmology
theory, applied to the visible part of the Universe, to be
valid.

In sum, the Cosmological Principle is a mathematical
convenience which does not have to be globally valid in
order for the results of standard cosmology theory to apply
to the part of the Universe we can see.  Humphreys has
misinterpreted the historical fact that this principle was
invoked to simplify the mathematics of cosmology to imply
that, without this assumption, the standard model falls apart,
even when applied only to the visible portion of the
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Universe.  This is not so.  Contemporary
cosmology theorists do not implicitly believe
that the Cosmological Principle is true
throughout the Universe, but this does not
affect their work since it is necessary only that
it be valid locally.

2.2 Misunderstanding About the
Gravitational Properties of Bounded

and Unbounded Universes
The other side of the erroneous assertion

that the global validity of the Cosmological
Principle is essential to Big Bang models is
the erroneous assertion that relaxing this
principle produces profound changes in the
gravitational properties of the Universe.  In
particular, Starlight and Time asserts,
wrongly, that the supposition of a boundary to
the matter of the Universe, beyond which there
is only vacuum, completely changes the
gravitational properties of the Universe and
consequently the time-keeping properties of
physical clocks in the Universe.

Confining our attention to universes which
are spherically symmetric about Earth, there
are two classes of bounded universes:  those
with a boundary within the Earth�s particle
horizon, and those for which the boundary is
more distant than the particle horizon.  The
presence of a boundary is manifestly irrelevant
in the latter case, since gravitational influences
from the matter distribution beyond the
boundary, travelling at the speed of light,16

have not yet reached Earth.  The observed
interior properties of such a universe cannot
depend in any way on the presence or absence of matter
beyond the horizon.  The standard Big Bang model is
consequently an accurate description of what we are able
to observe in such bounded universes, and it is for this
reason that cosmology theorists do not worry about the
very large-scale inhomogeneity of the Universe.

Starlight and Time proposes that the boundary is
within Earth�s particle horizon.  This can be seen from the
low value of the comoving radius of the edge proposed in
its example model17 (which is actually too low,
corresponding to a redshift of Zedge = 1.375, well below the
largest redshifts observed for discrete objects, around Zmax
≈ 5),6 and from its appeal to an optically thick boundary to
preserve the thermal character of the observed cosmic
microwave background radiation (this is not necessary if
the boundary is beyond the particle horizon).  Thus, in
Humphreys� model, there is sufficient time for gravitational
influences from the matter distribution (or lack thereof)
beyond the boundary to produce detectible effects at Earth.
What are these effects?  It is easy to show that, in fact,
there are none.  The arguments of Starlight and Time on

this score are basically Newtonian, so we will first disprove
this thesis using Newtonian arguments and only then cite
the corresponding results from General Relativity.

Starlight and Time claims that the interior
gravitational properties of a spherical bounded universe
are profoundly different from those of an unbounded
universe, both of which are assumed to be locally
homogeneous and isotropic within the matter-filled region.
The two cases are illustrated in panels (a) and (b) of Figure
1.  The two cases differ in that the unbounded case has a
spherically symmetric matter distribution extending without
limit outside the boundary which marks the edge of the
bounded case.  Any difference in the interior properties
(that is, the properties within the actual boundary of the
bounded case and the corresponding region of the
unbounded case) of the two universes must be due to the
additional exterior matter in the unbounded case.

Starlight and Time alleges that the bounded Universe
has a large-scale pattern of gravitational potential and
gravitational force which points toward the centre, but that
the unbounded Universe does not.18-20  This situation is

Figure 1. (a) Bounded, and
(b) Unbounded cosmos matter distributions.
(c) Gravitational field configuration for the bounded cosmos.
(d) Humphreys’ claim of no fields in the unbounded cosmos.
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illustrated in panels (c) and (d) of Figure 1.  In the limit of
the validity of Newtonian gravity, the gravitational field
and potential at any point is a linear function of the matter
distribution, so that we can split the unbounded Universe
into two parts, the interior and exterior matter distributions,
and calculate the field contribution from each of these parts.
The sum of these contributions equals the interior field,
which, according to Humphreys, vanishes.  We may
express the situation in terms of the standard Newtonian
expression for the gravitational field g(x) at some position
x within the interior region:
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In these expressions, g int(x) is the
gravitational field at locations x (inside the
boundary) which is produced by the matter within
the boundary while gext(x) is the field at the same
location produced by the matter external to the
boundary.  Similar expressions can be written for
the gravitational potential.  The field contribution
in the interior region of the unbounded matter
distribution which is due to the interior matter
distribution itself, gint(x), is the same for the
bounded and unbounded cases, since the interior
matter distribution is identical for the bounded
and unbounded cases (see Figure 2, panel (a)).
In order for the total field (that produced by the
interior and exterior matter) to vanish in the
interior region, it necessarily follows that the field
contribution in the interior region due to the
external spherical matter distribution must
exactly cancel out the field contribution due to
the interior matter distribution:
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The claim that the gravitational field vanishes in
the interior region of the unbounded Universe
requires that the field produced in the interior
region by the external spherically symmetric
matter distribution be exactly the opposite of the
field of the bounded matter distribution, as
illustrated in Figure 2, panel (b).  This
requirement is in conflict, however, with a well-

known theorem of Newtonian gravity:
The gravitational field in the empty interior of a hollow
spherically symmetric matter distribution vanishes. The
gravitational potential in such a region is spatially non-
varying.
In fact, the field due to the exterior matter distribution

vanishes in the interior region, gext (x) = 0, so that the field
in the interior region is due solely to the interior matter
distribution:

g x g x d x G
x x

x x
( ) = ( ) = −
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int
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3

3ρ

as illustrated in panels (c) and (d) of Figure 2.  This field is
identical to the field of the bounded Universe.  A similar
argument leads to the conclusion that the pattern of
Newtonian gravitational potential in the interior of the
bounded and unbounded Universes is identical, with the
possible exception of a spatially non-varying offset between
the two cases.  The gravitational effects on clocks which

(1)

Figure 2. (a) Actual field configuration due to the interior matter in the unbounded
cosmos.

(b) Field which the exterior matter must produce in order to cancel the
field produced by the interior matter.

(c) Actual field configuration produced by the exterior matter.
(d) Actual field configuration in the unbounded cosmos.

(2)
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Humphreys alleges to occur in the bounded Universe are,
in the Newtonian limit, the result of differences in potential,
and the pattern of potential differences in the interior of
the bounded and unbounded cases is identical.

The identity of the gravitational field in the interior of
the bounded and unbounded cases may be easily seen by
consideration of the motion of galaxies in the interior region
of both cases.  If we consider a galaxy located at the same
position in the two models and follow its motion as both
models expand, we will find that the motion is identical
for the two cases:  radial recession (with identical speeds)
from the centre, but with identical radial accelerations
toward the centre which slow the recession as time passes.
In the Newtonian description, the deceleration which slows
the expansion of the Universe, whether bounded or
unbounded, is due to the gravitational field of the Universe.
This deceleration is identical for the two cases because the
gravitational field is identical.  Indeed, if Humphreys� claim
of zero field in the unbounded Universe were correct, then
in the Newtonian description of such a Universe, the
Universe would expand without decelerating.  In fact,
however, an unbounded Universe decelerates in exactly
the same way as a bounded Universe with the same interior
properties.

This Newtonian counter-argument to Humphreys�
erroneous Newtonian arguments may be readily extended
to a truly relativistic Universe.  The General Relativity
result which corresponds to the Newtonian �hollow sphere�
theorem is a corollary of a famous General Relativity
theorem called Birkhoff�s theorem.  This corollary has the
consequence that

�the metric inside an empty spherical cavity at the
center of a spherically symmetric system must be
equivalent to the flat-space Minkowski metric ηαβ . . .
This corollary is analogous to another famous result
of Newtonian theory, that the gravitational field of a
spherical shell vanishes inside the shell . . .  Its
importance arises from the fact that the Birkhoff
theorem is a local theorem, not depending on any
conditions on the metric for � → ∞ (aside from
spherical symmetry), so that space must be flat in a
spherical cavity at the center of a spherically symmetric
system, even if the system is infinite � even, in fact, if
the system is the whole universe.�21

The flat space-time described by the Minkowksi metric
has no gravitational fields.  In the general relativistic
description as well as the Newtonian approximation, the
external spherically symmetric matter produces no
gravitational effects on the interior region, so that the
interior gravitational properties are identical.

Another way of recognising the identity of the interior
gravitational properties of the bounded and unbounded
cases is to note that the space-time metric, gµν, is identical
in the interior of both kinds of Universe.  The identical
metric means that the two classes of Universe have identical
geometrical properties, such as space-time curvature, in

their interior.  These identical properties result in identical
gravitational behaviours (interested readers are referred to
the Supplement for a discussion of the relation between
the metric and more familiar gravitational properties such
as the �gravitational field� and �gravitational potential�).
Although Humphreys agrees that the metric is identical in
the interior of the matter boundary for both bounded and
unbounded cases, he fails to recognise the implications of
this fact.  Responding to our 1995 rebuttal of Starlight
and Time,22 he writes:

�. . . What they are actually trying to say is true:  within
the matter sphere, the local curvature of space is the
same in both types of cosmos.  But the local curvature
of space is not the property which makes the essential
difference.  The distinguishing properties are the
gravitational field strength and the gravitational
potential, both of which are in principle objectively
measurable.  In a bounded-matter universe there exists
a small but definite large-scale pattern of gravitational
force pointing toward the center;  in an unbounded
universe there is none.  In a bounded-matter universe
there is a large difference in gravitational potential
energy between the center and the edges;  in an
unbounded universe there is none.  How could the
challengers overlook such obvious differences?�20

We have shown above that there is no difference in
the pattern of gravitational field or the spatial pattern of
potential differences in the interior regions of the bounded
and unbounded cases.  Humphreys fails to recognise that
it is the curved geometry of space-time which produces
all of the familiar gravitational properties such as the
Newtonian field and potential, and less familiar phenomena
such as gravitational time dilation.  Identical interior space-
time metric implies identical interior space-time geometry
which implies identical interior gravitational properties.
The failure to recognise this fact lies at the heart of the
errors of Starlight and Time.

3. MISUNDERSTANDINGS ABOUT TIME IN
COSMOLOGICAL MODELS

The metric in the interior of a locally homogeneous
and isotropic space-time may be written, using coordinates
which are at rest with respect to the matter of the Universe
(�comoving coordinates�), in Robertson-Walker form:23

where τC is the cosmic time coordinate, η a dimensionless
radial coordinate, θ and ϕ the standard spherical angles,
and a(τc) the time-dependent radius of curvature or scale
factor of the Universe.  The parameter k takes on the values
-1, 0 and 1 for spaces of negative, zero and positive
curvature, respectively.  The example cosmological model
employed in Starlight and Time uses k = +1.  The metric
tells how to compute the space or time distance between
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events at different locations in space-time.  It thus must
figure prominently in any discussion of time passage in
the Universe.  Starlight and Time and other of
Humphreys� cosmological writings exhibit serious
misunderstandings about what time measures are relevant
in discussions of cosmology and how to use the metric to
compute them.  We will illustrate these misunderstandings
by a number of quotes from Humphreys� writings.  The
first comes from the introductory part of the relativity
appendix in Starlight and Time:

�The �cosmic� time τ[τc in equation (3)] in the
Robertson-Walker metric is same [sic] as the proper
time or �natural� time in eq. (1).  It is the time
measured by a set of clocks throughout the universe,
each one riding with a galaxy as it moves with the
expansion of space.  These clocks can all be
synchronized with one another.  Later on I will
introduce a distinctly different time, t, often called
Schwarzschild time, or �coordinate� time.  The
difference between these two types of time
measurements constitutes the essence of this paper, so
be alert for the distinctions.�24

This statement, which is correct, clearly affirms that the
time measured by a physical clock located in a galaxy (for
example, a clock on Earth, in the Milky Way galaxy, or a
clock located in some other galaxy) is the same as the
cosmic time of standard cosmology theory.  Thus, the
amount of physical time elapsed on a physical clock located
on Earth or in a distant galaxy is simply the elapsed cosmic
time.  This should settle the matter, since it tells us how to
measure time intervals elapsing on real clocks in the
Universe.  Instead, Humphreys introduces a new time
coordinate and prefers to make measurements in that
coordinate.  The reader should note that the difference
between the real, physical, �natural� time measured by real,
physical clocks and Humphreys� preferred Schwarzschild
time coordinate is, by his own declaration, the essence of
his model.  We shall see that this �essential� difference is
irrelevant to what really happens on real, physical clocks
in the Universe.

The second quote comes from Humphreys� reply to
our 1995 rebuttal22  of Starlight and Time:

�. . . Conner and Page again spend much effort
asserting another point I had already made.  It is on
page 114, the fact that the same �comoving�
coordinate system equation can be used to describe
that part of the bounded biblical cosmos which has
matter in it.  In it, clocks can similarly be synchronized.
Next they say (section 2, end of first subsection):
�As the universe expands from a certain size a1 to a
larger size a2, exactly the same amount of [�cosmic�]
time passes on every comoving clock.�
They imply that somehow this fact is damaging to my
theory, but nowhere in their article do they say exactly
why that should be.  Therefore, I will spell out their
implication for them.  They are implying that right

�now�, all parts of the cosmos are the same age.  If
that implication were so, it would invalidate my
theory�.25

In this statement, Humphreys agrees with us that, as the
Universe expands from small initial size a1 to its present
large size a2, all comoving clocks (these are the clocks
which �ride along with each galaxy� as Humphreys puts it
in his first quote) experience the same passage of proper
or �natural� time.  This clearly means that the same amount
of time, as measured by physical clocks, has elapsed in
every part of the Universe as the Universe has expanded
to its present size.  Therefore, at the present moment in the
history of the expansion of the Universe, that is, on space-
like hypersurfaces for which the radius of curvature a is
the same at all locations in the interior of the matter sphere
(a definition of simultaneity which is also adopted by
Humphreys),26 it is inescapable that the same amount of
physical time has elapsed in every part of the Universe.
To borrow Humphreys� words,

�right �now�, [that is, on space-time surfaces of
constant spatial curvature, which is clearly what
Humphreys intends in his definition of cosmic
simultaneity, demonstrated in his Figure 226] all parts
of the cosmos are the same age�.
The third quote comes from Humphreys� reply to Dr

John Byl�s rebuttal of Starlight and Time published in
Creation Research Society Quarterly:27

�Byl�s assertion, �All galactic clocks tick at the same
rate�, contains the loose ends of its own unravelling.
To specify the �rate� of one type of clock, we need to
have another type of clock in the same location for
comparison.  If I tell you your watch is running slow,
you have the right to ask what clock I am saying is
correct.  To what other type of clock is Byl comparing
his cosmic clocks?  He does not say.  That renders his
claim of �same rate� meaningless.  Furthermore,
according to Schwarzschild clocks, his statement is
wrong:  in a bounded universe, Byl�s clocks tick at
different rates (relative to my clocks) in different places.
Byl�s clocks really should not be called �cosmic� at
all.  The name comes from applying his metric to an
unbounded �Big Bang� cosmos, where a similar type
of analysis would show that cosmic clocks and
Schwarzschild clocks would indeed tick at the same
rate everywhere [this claim is false, as we show below].
For the bounded, finite-mass, non-Big-Bang cosmos I
propose, perhaps Byl�s system should be called local
clocks and local time�.28

The reader should note that there is an evolution of
Humphreys� ideas between the first (1994) and third (1997)
quotes.  In the first quote, Humphreys acknowledges that
the cosmic time coordinate τc of the standard Robertson-
Walker metric of cosmology is the time measured by a
physical clock on Earth or accompanying a distant galaxy.
In the second quote, he again acknowledges this fact but
tries to avoid its force.  In the third quote, he rejects the



CEN Tech. J., vol. 12, no. 2, 1998 181

PapersStarlight and Time — Conner and Page

legitimacy of the cosmic time coordinate in a bounded
Universe.  Byl is saying that as the Universe expands a
given amount, all galactic clocks register the same
passage of physical time.  Humphreys is wrong in saying
that there is no time reference for Byl�s statement.  Byl is
using the expansion of the Universe as his reference.  All
galactic clocks tick at the same rate with respect to the
expansion of the Universe, a fact which Humphreys
affirms in the second quote.  Byl�s statement is true and is
virtually identical to the statement of ours which
Humphreys quoted in his quote # 2 above, and which
Humphreys agreed is a fact.  Although Humphreys
acknowledged in the first and second quote that cosmic
time (or, if he prefers, �local� time) is indeed the time kept
by physical clocks in real galaxies, he rejects this time
measure because he prefers to use Schwarzschild time.  It
is true that Schwarzschild clocks do not keep the same
time as galactic clocks (this difference is the essence of
the model), but the question which must be answered is,
�Which clock actually tells how much time has elapsed at
a particular galaxy or on the Earth�.  By Humphreys� own
admission (quote # 1), it is the cosmic, or �local�, or
�natural�, or �galactic� (these terms are all interchangeable)
clocks which tell how much time has elapsed on Earth or
at distant galaxies.

3.1 The Metric Tells How to Measure Distance
and Time in the Universe

From the third quote above, one might get the
impression that Humphreys and his critics are engaged in
a childish shouting match: �My time is better than yours!�
�No!  My time is better!� Is there no objective time measure
to which appeal can be made in order to resolve this
disagreement?  In fact, there is.  General Relativity provides
a very specific method for calculating how much time
passes on a physical clock travelling along a physical
trajectory through space-time.  By using this method, it is
easy to unambiguously answer the question, �Which time
measure gives the true age of the cosmos in the bounded
Universe model of Starlight and Time�?  This book�s
errors stem in part from a failure to follow the mathematical
rules of General Relativity for measuring physical time
passage in the Universe.

Starlight and Time affirms, rightly, that the space-
time metric tells us how to measure space-time intervals
between space-time events which are separated by some
infinitesimal coordinate differential dxµ.29  The square of
the space-time interval, ds2, is given by

ds g dx dx g dx dx2

0

3

0

3

= ≡
= =

∑ ∑
µ

µν
µ ν

µν
µ ν

ν

In this expression, the dxα are coordinate differentials
between two events at slightly different coordinate locations
in space-time, and gαβ are the components of the space-
time metric, which gives the space-time interval in
accordance with this equation.  The Greek indices µ and ν

are, in this equation, dummy indices which are summed
over their range of 0 to 3.  The right-most expression gives
the definition of the �Einstein summation convention�
(repeated upper and lower indices are summed over their
full range), a convenient shorthand notation which we will
employ.  The index 0 customarily refers to the time
coordinate and the indices 1, 2, 3 refer to the space
coordinates.  An important fact which must be kept in mind
in thinking about this equation is that ds2 is the square of a
physical distance, either in space or time, along the
differential trajectory element dxµ.  With the sign
convention adopted in Starlight and Time, ds2 > 0 means
that ds2/c2 is the square of the physical time elapsed on a
physical clock traversing the coordinate trajectory
dx ds c d proper

µ τ: 2 2 2= .  This physical time interval is called
the proper time interval, dτproper.  Humphreys also refers
to this as the �natural� time interval.30  If ds2 is negative,
then �ds2 is the square of the physical distance interval
between the two space-time events which would be
measured by an observer for whom the two events are
simultaneous:  − =ds dlsimult

2 2 .  The intermediate case, ds2

= 0, corresponds to a trajectory dxµ which is traversible
only by particles moving with the speed of light.
Humphreys affirms these facts.30

The quantity ds2 is an �indexless� quantity;  it has no
superscripts or subscripts.  The expression used to compute
ds2, ds2 = gµνdxµdxν, has two sets of super- and subscripts,
but these are summed over and so do not persist in the
final result.  The quantity ds2 is known in tensor calculus,
the mathematical language of relativity, as a scalar
invariant � its value is independent of the coordinate
system used to express or compute it.  Thus, if one were to
describe the coordinate differentials dxµ in a new coordinate
system, x′, then when one computed the space-time interval
in the new coordinate system, one would find

ds g dx dx g dx dx ds' ' '
' '2 2= = =α β

α β
µν

µ ν

This is an elementary fact of tensor calculus which occurs
because, in the new coordinate system, the metric takes on
new values gα′β′ which are not the same as the old values
gµν in the old coordinate system.  The changes in the values
of the metric coefficients exactly counteract the changes
in the values of the coordinate differentials in such a way
that the scalar (indexless) quantity ds2 is conserved.  This
fact is shown in any elementary textbook of tensor analysis;
a simple demonstration is also given in the Supplement.  It
is also eminently reasonable:  the physical time elapsed on
a clock cannot depend on the coordinate system used to
describe the clock�s trajectory.

The crucial fact to keep in mind is that the physical
space-time distance along a trajectory is independent of
the coordinate system used to describe that trajectory.  So,
for example, if one uses a particular coordinate system to
calculate the physical time elapsed along a time-like (that
is, ds2 > 0 for each differential step dxµ) trajectory, one

(4)

(5)
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will obtain the identical physical elapsed time along this
physical trajectory using any other coordinate system.
The time elapsed on a physical clock is determined by the
clock�s trajectory through space-time, not by the coordinate
system used to describe the trajectory.  This means that
there is something incorrect in the appeal, in Starlight and
Time, to a different coordinate system to argue against
physical results which are derived from the standard
comoving coordinate system of cosmology theory.

3.2 Time Measurements Using the
Robertson-Walker and Klein Metrics

We can apply the principle that �the physical time
elapsed on a physical clock is determined by the clock�s
trajectory and not by the coordinate system� to the physical
time elapsed on physical clocks in a bounded universe and
compare the results with the claims of Starlight and Time.
We will start with the standard coordinate system and
metric of cosmology theory and derive the desired result
in that simple coordinate system. Then we shall derive the
same result in the coordinate system which Humphreys
prefers.

The metric in the matter-filled portion of a locally
homogeneous and isotropic space-time geometry is given
by equation (3).31  How can this equation be used to
determine the age of the Universe?  All that is needed is to
choose an observer to measure the age of the Universe,
determine what the coordinate trajectory of that observer
is, and then �turn the crank� of equation (3) to compute the
time passage which this observer would measure at the
Universe ages.  The question which is most relevant to
Starlight and Time is, �how old is the Universe as
measured by observers on Earth and by observers on distant
galaxies?�  The trajectories of such observers are simply
the trajectories of their host galaxies.32  These trajectories
are extremely simple: ηcom obs(τc) = constant, θcom obs(τc) =
constant, ϕcom obs (τc) = constant.  Starlight and Time
affirms that this is so.35  Such observers are often called
�comoving� because they move with or �co-move� with
the expansion of the matter of the Universe;  the coordinates
(η, θ, ϕ) are called �comoving coordinates� for the same
reason.  For such observers, the differential coordinate
trajectories are given by dηcom obs = 0, dθcom obs = 0, dϕcom obs =
0.  Substitution of these coordinate trajectories into the
metric gives us the proper time interval measured by such
observers:

ds c d c dcom obs com obs c 
2

  
2= =2 2 2τ τ

or
d dcom obs cτ τ =

This equation may be trivially integrated from the beginning
of the expansion of the Universe to yield

τ τ τ τcom obs com obs beginning c c beginning  − = −, ,

In other words, the physical time measured by a comoving

observer�s clock since the beginning of the Universe is
identical to the cosmic time elapsed since the beginning of
the Universe.  It should be noted that the location (η, θ, ϕ)
of the observer in the matter sphere does not enter into this
equation � all observers measure the same dependence
of their local physical clock time on the local radius of
curvature a of the Universe.  If one defines a surface of
cosmic simultaneity as the space-time surface on which
the radius of curvature a is everywhere the same (this is
the standard definition of cosmic simultaneity in Big Bang
theory and is the definition Humphreys adopts26), then all
physical clocks associated with Earth and distant galaxies,
regardless of their location on this surface, will read the
same time elapsed since the beginning of the expansion.
This equation does not tell us what that time passage is for
any specific stage of the expansion of the Universe.  To
determine that, it is necessary to determine or adopt an
equation of state for the matter of the Universe and solve
the dynamical equations of cosmology.36  In all cases, the
elapsed dynamical time is a function only of the cosmic
scale parameter a.  That is, there is no dependence of the
elapsed cosmic or comoving clock time on a comoving
clock�s location within the matter-filled region.  For the
matter-dominated, pressureless, positive curvature (k = +
1 in equation (3)) case which is used for illustrative
purposes in Starlight and Time, the cosmic time is given
in differential form by

d d
da

c

a

a acom obs cτ τ = = ±
−max

and in integral form by
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where a is the radius of curvature of the Universe, amax
being its value at the moment of maximum expansion (this
expression is equivalent to Humphreys� equation (19)37),
except that his equation is missing a factor of π/2.6  It should
be noted that equation (10) applies to both the bounded
and unbounded k = + 1 universes.  This is so because the
dynamical equations which govern the time behaviour of
a(τc) depend only on the local properties of the Universe,
and these are the same for the bounded and unbounded
cases.

Equation (10) is the elapsed time on a comoving clock
and hence is the age of the Universe as measured by a
physical observer residing on Earth or on a distant galaxy.
There is no hint in this expression of differential time
passage on Earth and on distant galaxies � the elapsed
comoving clock proper time is independent of the location
(η, θ, ϕ) of the clock.  There is no differential time passage
for real, physical observers located on Earth and in distant

(6)

(7)

(8)

(9)

(10)
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galaxies in a locally homogeneous and isotropic universe.
Humphreys claims that consideration of time passage

using his preferred Schwarzschild coordinate system
indicates otherwise.  We will now consider this.  As we
switch over to Schwarzschild coordinates, it is important
to keep in mind the question we wish to answer using them:
�How much time is observed to pass on a physical clock
located on Earth or in a distant galaxy as the Universe
expands?�  We are still thinking about the space-time
trajectories of comoving clocks, since these clocks are the
ones which tell how much time elapses on Earth and in
distant galaxies.  When we switch to Schwarzschild
coordinates, the metric coefficients will be different from
the Robertson-Walker metric, but the space-time trajectory
description will also be different.  Both effects must be
taken into account when computing the elapsed proper time
in the new coordinate system.

The transformation from comoving coordinates to the
Schwarzschild-like coordinate system employed by
Humphreys was derived by Klein:38
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In these expressions, ηedge is the comoving radial coordinate
of the edge of the matter sphere. The �+� sign is appropriate
for a collapsing matter sphere and the ��� sign for an
expanding one.  It should be noted that there is an error in
the corresponding expression in Starlight and Time for
the coordinate time t (equation (20)39).  That expression is
missing the leading (1 + b2)-1 and has a spurious ��� sign in
the denominator of the middle term.  In this new coordinate
system, the metric is
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In order to use the transformed metric of equation (14)
to compute the proper time elapsed on a comoving clock,
it is necessary to transform the comoving clock trajectory
from η,τc coordinates to r, t coordinates.  Recall that the
comoving coordinate trajectory of a comoving observer is
given by the spatial coordinates fixed:  dηcom obs = dθcom obs =
dϕcom obs = 0.  The θ and ϕ coordinates are the same for the
comoving and Schwarzschild coordinate systems, so we
will confine our attention to r and t.  Differentiation of
equation (11) subject to the constraint dηcom obs = 0 gives

dr dacom obs com obs  = η

As the Universe expands, comoving observers move
outward from the coordinate origin.  The Schwarzschild
time coordinate is given in equation (13) as a function of a
and η.  For a comoving observer, a is variable (since the
Universe expands) but η is fixed.  Therefore, the differential
element of Schwarzschild time elapsed along a comoving
clock trajectory is
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Now we can substitute the comoving observer
differential coordinate trajectories, equations (16) and (17)
into the Klein metric, equation (14), to obtain the
differential element of proper time elapsed along a
comoving observer�s trajectory:

ds c d

r t dt r t dr

com obs

com obs com obs com obs com obs com obs com obs

2 2

2 2

=

( ) − ( )
τ

β α
 

2

           = , ,

(as before, dθcom obs = dϕcom obs = 0).  The evaluation of this
expression is straightforward but tedious.  The reader may
perform it for himself or refer to the Supplement, where
we work it out step by step. The result is

d
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which is identical to the result (9) derived from the
Robertson-Walker metric and the dynamical equations of
cosmology.
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where
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Appeal to Schwarzschild coordinates cannot change
the amount of time which passes on a physical clock;  that
is determined by the trajectory of the clock and not by the
coordinate system.  This exercise is an illustration of the
fact that the proper time elapsed along a space-time
trajectory is a scalar invariant.  When one uses either the
Klein form of the metric or the Robertson-Walker form of
the metric (or any other form, for that matter, of the metric
of this space-time geometry) to answer the question, �How
much time elapses on Earth clocks (or distant galaxy clocks)
as the Universe expands?� one finds that the elapsed time
is equal to the cosmic time and is the same, regardless of
the location of the clock inside the matter sphere.

Before moving on to consideration of what
Schwarzschild time is, it is worth noting that Oskar Klein,
who devised38 the Schwarzschild-like coordinate system
employed by Humphreys in Starlight and Time, does not
use the coordinate time t as the time coordinate in his own
bounded cosmological model.2  There, to the extent that
he discusses time at all, he employs the conventional cosmic
time/comoving clock proper time of standard cosmology
theory.  He adopts an age of 13 billion years as a reasonable
estimate of the age of his bounded model, based on the
data available in 1971.14

3.3 What is Schwarzschild Time and Why is
Appeal to It Made in Starlight and Time ?

Humphreys acknowledges that Schwarzschild time
does not correspond to the time kept by comoving clocks,
that is, physical clocks on Earth and on distant galaxies.24

He also acknowledges, as the reader may verify by
inspection of equation (12), that for certain values of η
and a the Schwarzschild time has an imaginary component.
What kind of clocks would keep Schwarzschild time?  What
are the space-time trajectories of hypothetical clocks which
keep Schwarzschild time?  It is easy to show that the space-
time trajectories of such hypothetical clocks are, for much
of the history of the Universe, physically impossible
trajectories, moving faster than the speed of light.

3.3.1 The Space-time Structure of
Constant tSchwarzschild

 Hypersurfaces and
Schwarzschild Clock Trajectories

In order to visualize constant tSchwarzschild surfaces and
Schwarzschild clock trajectories in a way which makes
their physical absurdity manifest, it is desirable to recast
the coordinate description of a bounded cosmos into a form
which makes the trajectories of light and of physical
observers obvious.  We do this by appealing to the ψ, χ
coordinate system.  The angle χ is an alternate comoving
radial coordinate defined by η = sinχ.40  The radius of
curvature a and cosmic time τc of the bounded sphere may
be expressed in terms of the parametric equations
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where ψ is an angle which ranges from 0 at the beginning
of the expansion to 2π at the end of the recollapse.6

Substitution of these into the k = + 1 Robertson-Walker
metric yields the simple form

ds a d d d2 2 2 2 2 2= − −( )ψ χ χsin Ω

The χ, ψ coordinate system yields a simple space-time
diagram (see Figure 3) which closely resembles the
Minkowski diagrams of Special Relativity.  In this
coordinate system, horizontal lines are hypersurfaces of
constant spatial curvature a and constant comoving clock
proper time τcom obs and cosmic time τc.  These lines terminate
at χedge = sin-1 ηedge, which is π/6 for the example used in
Starlight and Time;6,17  vertical lines are the trajectories
of comoving particles.  Successive horizontal lines thus
represent the Universe at successive moments in its
expansion.  Radial light trajectories, ds2 = 0, dϕ2 = dθ 2 = 0,
manifestly obey the relation dχ = ±dψ, so radially
propagating light rays travel on trajectories tilted at 45° to
the vertical, as shown in Figure 3.

Surfaces of constant tSchwarzschild are defined by ζ
constant, or equivalently, ζ 2 constant.  The relation η =
sinχ along with equation (20) may be substituted into the
expression for ζ (equation (13)) to yield the equation of
constant tSchwarzschild surfaces in the ψ, χ plane.  With a little
simplification, the result is
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A sample of representative constant tSchwarzschild surfaces is
plotted as the dashed curves in Figure 4.  Constant tSchwarzschild
surfaces are not horizontal and so do not coincide with
constant τc or τcom obs or constant a surfaces.  It is also clear
from this diagram that surfaces of constant tSchwarzschild are
not space-like for all a and η, since parts of them lie inside
the future light cone (less than 45° to the vertical).  The
slope of the constant t surfaces is given by
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d
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When this slope is steeper than �1, the surfaces are time-
like.  The boundary between the time-like and space-like
parts of the constant tSchwarzschild surfaces is plotted as the
dotted line in Figure 4.  In the regions of space-time below
this curve, the constant tSchwarzschild surfaces are time-like �
there is an unambiguous future-past relationship between
adjacent points on these parts of the constant tSchwarzschild
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surfaces.  This means that these surfaces cannot be
simultaneous surfaces for any physical clocks (this is
discussed more fully in the Supplement).

The succession of constant tSchwarzschild hypersurfaces
defines the constant time surfaces in the Schwarzschild
coordinate system.  The space-time trajectories orthogonal
to these surfaces are the  trajectories of the Schwarzschild
clocks.  These clock trajectories can be determined by
finding the radial trajectories dTµ = (dψSchw cl , dχSchw cl) which
are orthogonal to the tangents dSµ = (dψconst t Schw, dχconst t Schw)
of the constant tSchwarzschild surfaces.  The orthogonality
criterion is given by the metric:  gµνdTµdSν = 0.  Using the
metric appropriate to the (ψ, χ) coordinate system, we have

0 = −d d d dSchw cl const t Schw cl const tSchw Schw
ψ ψ χ χ    

or

d
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This equation may be integrated to yield the equation which
defines the Schwarzschild clock trajectories:
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This leads to the unsurprising result that Schwarzschild
clocks are stationary with respect to the Schwarzschild
radius coordinate r.  Since η = r/a, Schwarzschild clocks

Constant tSchwarzschild surfaces and Schwarzschild clock trajectories
bounded k = +1 cosmos (ηedge = 0.5, χedge = π/6)
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Figure 4. ψ, χ spacetime diagram of the Starlight and Time  bounded
cosmos showing surfaces of constant Schwardschild
coordinate time (dashed lines) and the trajectories of
Schwarzschild clocks (solid lines).  The dotted line is the
boundary below which the constant tSchwarzschild surfaces and
Schwarzschild clocks are physically impossible.  The heavy
dash-dot line is the β = 0 surface, which clearly does not
coincide with the event horizon (wavy line labelled ‘EH’).
The wavy line ‘A’ is a radial inward light trajectory which
leaves the surface at the beginning of the expansion,
arriving at Earth long before the event horizon.
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Constant τcomoving surfaces, comoving clock trajectories and light
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Figure 3. Space-time diagram in ψ, χ coordinates for the bounded
cosmos discussed in Starlight and Time  (k = +1, ηedge =
0.5).  The ψ coordinate parametrises the expansion and
comoving time/cosmic time passage via equations (20).
ψ ranges from 0 to 2π;  the range 0 to π/4 is shown here.
Surfaces of constant spatial curvature a and constant
comoving clock time and cosmic time are horizontal lines
(shown dashed).  Comoving clock trajectories are vertical
lines (shown solid).  Radial light trajectories travel at + 45°
to the vertical.  An inward (A) and outward (B) propagating
light ray is shown by the labelled wavy lines.
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are not stationary with respect to the matter of the Universe.
Representative Schwarzschild clock trajectories are plotted
as the thin solid lines in Figure 4.  The unphysical character
of Schwarzschild clocks is seen by the fact that part of the
trajectory (the part below the dotted line) of such clocks
involves the clocks moving faster than the speed of light
with respect to the matter of the Universe, something
impossible for real, physical clocks.  From this diagram, it
is obvious that Schwarzschild clocks travel inward with
respect to the matter of the Universe (which travels on
vertical trajectories in this coordinate system) and that, in
the lower right part of the diagram, Schwarzschild clocks
travel faster than the speed of light.  In the same portion of
space-time in which the constant tSchwarzschild surfaces are
time-like, the Schwarzschild clock trajectories are space-
like.

The properties of time-like constant t surfaces and
space-like clock trajectories are impossible for any physical
timekeeping system.  Physical clocks are constrained to
travel along time-like trajectories (within 45° of the vertical
in the ψ, χ plane) and physically possible surfaces of
simultaneity must be space-like (within 45° of the
horizontal in the ψ, χ plane).6  The time-like constant
tSchwarzschild surfaces and space-like Schwarzschild clock
trajectories imply clocks which travel, with respect to the
matter of the Universe, faster than the speed of light.  This
is a physical impossibility, and Schwarzschild clocks are
consequently physically impossible.  If one confines one�s
attention to the space-time region above the dotted line in
Figure 4, the Schwarzschild clock trajectories and constant
tSchwarzschild surfaces are physically possible, but they are
irrelevant, because they do not correspond to the real,
physical clocks we are interested in, which are clocks on
Earth and clocks associated with distant galaxies.

With this understanding of
Schwarzschild time, we are in a position
to evaluate Humphreys� reliance on
Schwarzschild time as the correct time
measure in a bounded Universe.
Humphreys rightly notes that comoving
clocks and Schwarzschild clocks do not
keep the same time.  It is obvious that
this must be the case since Schwarzschild
clocks move with respect to comoving
clocks.  Which of these clocks is more
suitable as a measure of how much time
has passed in the Universe since the
beginning of the expansion?  During the
early part of the expansion of the
Universe, Humphreys� favoured
Schwarzschild clocks travel faster than
the speed of light and thus do not
correspond to physically possible clocks.
Comoving clocks, on the other hand,
travel along with the matter of the
Universe.  Schwarzschild clocks

measure the time elapsed along space-time trajectories
which, early in the expansion, are physically impossible
and which at all times do not coincide with the trajectories
of matter particles in the Universe.  Comoving clocks
measure the proper time elapsed along the trajectories
which matter particles actually follow in the Universe.  It
is clear that comoving clocks are the correct answer to the
question, �Which clock tells how much time an observer
on Earth or on a distant galaxy measures to elapse from
the beginning of the expansion of the Universe to some
later moment in the expansion?�
Finally, we consider the claim (quote # 3 above) that, in an
unbounded Universe, the Schwarzschild time would match
the cosmic time or comoving clock proper time.  The
unbounded k = + 1 Universe occurs when we take the edge
of the bounded Universe to be χedge = π.41  The trajectories
of Schwarzschild clocks are still given by rSchw cl = aηSchw cl
= constant, so relation (26) still gives the trajectories of
Schwarzschild clocks.  The constant tSchwarzschild surfaces are
still orthogonal to the Schwarzschild clock trajectories, so
it follows that these are given by

± ( ) ( ) =cos cos / tanχ ψconst t const tSchw Schw
cons t    

2 2

(�+� for χ < π/2, �-� for χ > π/2).  Schwarzschild clock
trajectories and constant tSchwarzschild surfaces for the
unbounded case are shown in Figure 5.  The shapes of
these surfaces and trajectories are identical to the bounded
Universe surfaces and trajectories except that they extend
all the way to χ = π, whereas the bounded case stopped at
χ = π/6 (or χedge = sin-1 ηedge if a different choice of ηedge is
made).  It is obvious from this figure that constant tSchwarzschild
surfaces do not correspond to constant τc surfaces (which
are horizontal) and that the trajectories of Schwarzschild

Constant tSchwarzschild surfaces and Schwarzschild clock trajectories
unbounded k = +1 cosmos (χedge = π)
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Figure 5. ψ, χ space-time diagram of an unbounded (χedge = π) k = +1 cosmos, showing
surfaces of constant Schwarzschild time and the trajectories of Schwarzschild
clocks.  Schwarzschild clock trajectories are physically impossible in the region
between the dotted lines.
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clocks do not correspond to the trajectories of physical
comoving clocks (which are vertical).  Thus, contrary to
Humphreys� claim, it is not the case that the Schwarzschild
time coincides with the cosmic time in the unbounded Big
Bang cosmos.

3.3.2 �Earth Standard Time�
and Schwarzschild Time

The appeal to Schwarzschild time is puzzling in view
of the fact that in several places in Starlight and Time, it
is explicitly affirmed that the relevant time measure is Earth
proper time (which is also called �Earth Standard Time�).42

Further, Starlight and Time shows a plot of the expansion
of its example bounded sphere model37 which clearly
indicates that this bounded model requires the same billions
of years (of order amax/c, where amax = 4 x 1010 light years)
of proper time to expand as an unbounded model of
identical interior matter density.  Thus, in spite of the
extensive appeal to Schwarzschild coordinate time, it is
explicitly demonstrated within the pages of Starlight and
Time that the introduction of a boundary does not modify
the Earth proper time required for the Universe to expand
to its present size.

3.4 Conclusion
Schwarzschild time, appealed to so extensively in

Starlight and Time, is an irrevelant time coordinate which
corresponds to the time kept by a set of hypothetical clocks
which move with respect to the matter of the Universe at
all times, and at faster than light-speed at early times.  This
time coordinate tells us nothing about the time which is
measured by real, physical clocks in the Universe.  Despite
the fact that Humphreys asserts in a number of places that
the relevant time quantity in the Universe is the time kept
by real, physical, comoving clocks, when the need arises
to compute time passage on such real, physical clocks, he
veers away from physical reality and focusses instead on
the physically irrelevant Schwarzschild coordinate time.
It is true that, if one fails to notice that Schwarzschild clocks
are not real, physical clocks on Earth and on distant
galaxies, this focus on Schwarzschild time can make it
appear that the centre of the Universe is �younger� than the
edge, but when one returns to reality and asks the question,
�how much time has elapsed on Earth clocks and on clocks
located in distant galaxies�, one must drop Schwarzschild
time and compute the proper time elapsed on these clocks.
This is a trivially easy calculation � the metric tells us
that τcomoving = τcosmic.  Real, physical clocks on Earth and in
galaxies located in different parts of a bounded Universe
all keep the same time, cosmic time, and all remain
synchronised with each other throughout the expansion of
the Universe (this permanent synchronisation is readily
verified by inspection of Figure 3).  The dynamical
equations which govern the expansion of a bounded
Universe are identical to those which govern an unbounded
Universe with identical interior properties, so that the

expansion time-scales are identical for the two cases.
It follows from this that, if a young-Universe bounded

cosmos model could be devised, an unbounded Universe
with the same interior matter properties would also yield a
young-Universe time-scale.  However, as we show below,
realistic young-Universe relativistic cosmological models
are impossible.

4. MISUNDERSTANDINGS ABOUT
THE NATURE AND EFFECTS OF EVENT

HORIZONS IN THE UNIVERSE

The alleged effects of an event horizon in an expanding
bounded Universe occupy a prominent place in the physics
sections of Starlight and Time.  These argue that the
arrival of a shrinking event horizon at Earth would allow
distant regions of the Universe to age billions of years
during the passage of a single day of Earth time.43  However,
the discussion of event horizons is as flawed as the rest of
the book.  The mistakes include:  event horizons occur
where the �time-time� metric component, gtt, vanishes,17,37

the reason for the absence of an event horizon in an
unbounded cosmos is the absence of a large-scale pattern
of gravitational force,44 an event horizon stops the passage
of time on physical clocks traversing it,37 and matter and
light cannot travel inward inside a past event horizon.45

4.1 What Event Horizons Are
In cosmology theory, the term horizon refers to a

space-time boundary, typically between regions of space-
time which are accessible to an observer and those which
are not.  An event horizon, in particular, a future event
horizon, is a space-time boundary between regions from
which light can propagate to great distances and regions
from which it cannot.  Space-time events within the
boundary cannot be observed by observers far away
because light signals conveying information about these
events cannot propagate to the distant regions.  Because
an event horizon is the boundary between light trajectories
which can and cannot propagate to great distance, it follows
that the event horizon, considered through time, is itself a
light-like three-surface, which is one in which at each point
there is one light-like direction (gµνdxµdxν = 0) within the
surface, and all other directions within the surface are space-
like (gµνdxµdxν < 0).  Thus, a necessary though not sufficient
condition that a space-time trajectory xµ (λ) (where λ is a
quantity which parametrises the trajectory) coincide with
an event horizon is that gµνdxµdxν = 0 for all λ.

How can one locate the event horizon of a spherically
symmetric geometry?  In a static geometry, such as the
Schwarzschild geometry, the event horizon will be
stationary.  In such a case, and adopting coordinates such
that the metric is diagonal, it follows that gtt = 0 and dxeh

i = 0
(i = 1, 2, 3) satisfies the null requirement g dx dxeh ehµυ

µ ν = 0 .
In a dynamic geometry, the event horizon may not be
stationary � this is the case in the bounded cosmos
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proposed in Starlight and Time.  In that case, the fact that
dxeh

i ≠ 0  implies that gtt = 0 cannot define the location of
the event horizon, since those two conditions are
incompatible with the null requirement g x xeh ehµυ

µ ν = 0
(unless grr fortuitously vanishes wherever gtt vanishes,
which it does not in the model in question).

4.2 Why There is an Event Horizon in the
Bounded Cosmos But Not in the

Unbounded Cosmos
Starlight and Time is correct in affirming that there

is an event horizon in the bounded cosmos which is absent
in the unbounded cosmos, but the reason offered in
explanation of this is mistaken.  It is claimed, falsely, that
the reason is that there is a radial pattern of gravitational
force in the bounded matter sphere which is absent from
the corresponding region of an unbounded Universe.  We
showed in section 2 that the gravitational field is identical
for the interior regions of the bounded and unbounded
Universe.  The correct reason is that event horizons are
global properties of the geometry which depend on the
existence of distant observers � recall that the horizon is
the boundary between space-time regions which can and
cannot be seen by distant observers.  In the bounded
cosmos, there is an external asymptotically flat space-time
in which distant observers can reside, and from which a
distinction can be made between space-time regions in the
interior of the matter sphere from which light can or cannot
escape to the exterior.  In the unbounded cosmos, on the
other hand, there is no �outside� for light to escape to and
consequently no event horizon.6

4.3 The Location and Effects of the Past Event
Horizon of an Expanding Bounded Universe

It will be easier to think about the past event horizon
out of which an expanding bounded cosmos emerges after
first considering the future event horizon into which a
collapsing bounded cosmos would fall.  This event horizon
appears, at some value of the expansion parameter a, at
the centre of the matter sphere and thereafter expands
outward, eventually arriving at the surface as the surface
falls inside its own Schwarzschild radius.6  To determine
the trajectory of the expanding event horizon inside the
matter sphere, we need only keep in mind the meaning of
the event horizon:  the boundary between light rays which
can and cannot escape to great distance.  Clearly, any
radially outward-travelling light ray which arrives at the
surface before the surface falls within the event horizon
will escape, and any light ray which arrives at the surface
after the surface falls inside the horizon will not escape.
The boundary between these two cases is the outward-
travelling radial light trajectory which arrives at the surface
exactly at the moment the surface falls inside its
Schwarzschild radius.  This defines the event horizon in
the interior of the matter sphere.

If, in our Minkowski-like coordinate system (ψ, χ) we

label the moment the future event horizon arrives at the
surface by ψsurf, χsurf, the trajectory of the event horizon
inside the matter is simply given by the outward radial light
trajectory (dχ = dψ) which intersects this point:  χeh (ψ) =
ψ + χsurf � ψsurf, where the range of ψ during which the
horizon propagates to the surface is (ψsurf  � χsurf < ψ < ψsurf).

The inward-travelling past event horizon which occurs
during the expansion of a bounded cosmos is simply the
time-reversal of the future event horizon:  it is the set of all
radially-inward-travelling light trajectories which depart
from the surface at the moment the surface arrives at the
Schwarzschild radius.  The equation of the past event
horizon in the interior of the matter sphere is given by χeh(ψ)
= χsurf � ψ + ψ surf.  We show in the Supplement that, for the
sample bounded cosmology employed in Starlight and
Time (amax = 4 x 1010 light years, ηedge = 0.5, χedge = π/6) ,
the event horizon reaches the surface at ψsur f = π/3, a =
0.25amax.  Figure 4 shows the past event horizon (the wavy
line which heads inward from the surface at ψ = π/3).  The
locus on which β, the gtt component of the Klein metric,
vanishes is shown as the heavy dash-dot line. The β = 0
curve is clearly not coincident with the event horizon,
illustrating the point made previously that gtt = 0 does not
define the event horizon in a dynamic geometry.

4.4 What Effects Does the Event Horizon
Have on Observers Traversing It?

Is it true, as claimed in Starlight and Time, that the
event horizon has radical effects on the passage of time for
an observer traversing it or that, as the past event horizon
reaches Earth, distant regions of the Universe age
enormously during the passage of a brief period of time on
Earth?  It is easy to see, by examination of Figure 4, that
neither of these claims is true.

From the previous discussion, it is clear that the past
event horizon of an expanding bounded Universe is simply
a particular light-like surface:  that generated by the family
of inward-travelling radial light trajectories which leave
each point of the surface of the matter at the moment the
surface expands to its Schwarzschild radius.  Each point
in the interior of the matter lies on one of these trajectories,
and the arrival of the event horizon at the position of a
particular comoving observer in the interior of the matter
simply corresponds to the arrival of one of these radial
light rays at his location.  The light ray arrives at the
comoving observer and passes on toward the centre.  That
is the event horizon, as seen by such an observer.  This
light trajectory manifestly has no effect on the passage of
time for this observer.  His comoving clock continues to
tick in concert with the expansion of the Universe and in
synchrony with every other comoving clock on his constant
a surface.

Starlight and Time asserts the contrary, but this is
due to a misunderstanding.  The r, t part of the metric in
Schwarzschild coordinates is
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ds c d c dt dr2 2 2 2 2 2= = −τ β α

Humphreys wrongly alleges that the vanishing of β
(mistakenly identified with the event horizon) will cause
dτ to vanish, resulting in the momentary stopping of
�natural clocks�37 during which, it is claimed, exterior parts
of the Universe rapidly age.  This claim is in error:  this
equation gives dτ = 0 for finite dt only if dr = 0
simultaneously.  However, comoving clocks do not, in
general, have dr = 0.  As we showed in section 3, comoving
clocks have fixed η, so that dr = ηda = sinχda.  In addition,
at the moment β = 0, the coordinate time diverges to -
∞,6,17,39 so that dt at this moment is arbitrarily large.  Thus,
the arrival of the β = 0 surface at any finite comoving
radius χ will not stop comoving clocks at that radius:
dτcomoving ≠ 0.  As we showed previously, throughout the
expansion of the Universe, the elapsed proper time on
comoving clocks is given by

 d
a

a a

da

ccomovingτ =
−max

The vanishing of β is due to a singularity in Klein�s
coordinate system.  The coordinate time tSchwarzschild diverges
to -∞ along a certain surface in the interior (wrongly
identified with the event horizon in Starlight and Time)
and the gtt metric component must vanish on this surface
to keep the proper time interval finite.  One could redefine
the time coordinate in the interior of the matter sphere to
remove this singularity or even move the singularity so
that it coincides with the true event horizon.6  However,
due to the scalar invariant nature of the proper time,
whatever modification of the coordinate system employed,
it would still be the case that the time elapsed on physical,
comoving clocks would be

d
a

a a

da

ccomovingτ =
−max

Are any unusual aging effects in the distant Universe
observed by an Earthbound observer as the event horizon
arrives at Earth?  To determine this, we need to consider
how Earth-based observers receive information about the
passage of time at distant comoving clocks in a bounded
Universe.  This information obviously arrives by means of
light signals.  As shown in Figure 6, two signals emitted
from some comoving radius χem at different values of the
expansion parameter ψ, ψem and ψem + dψem, will arrive at
Earth at ψrec and ψrec + dψrec, respectively.  Since an inward-
travelling ray obeys the relation dχ = �dψ and the two rays
have to travel the same ∆χ to arrive at Earth, it is clear that
the dψrec = dψem.  Recalling the coordinate transformation
between τc and ψ,

d
a

c
d a dcτ ψ ψ ψ ψ= −( ) = ( )max cos

2
1

gives dτc,em = a(ψem)dψem and dτc,rec = a(ψrec)dψrec.  Since
dψrec = dψem, it follows that

d d
a

ac em c em
rec

em

τ τ
ψ
ψ, ,= ( )

( )
This means that the proper time interval separating the
reception of the two signals dτc,rec will differ from the proper
time interval separating the emission of the two signals,
dτc,em  by the factor a(ψrec)/a(ψem), the ratio of the size of
the Universe when the signals arrive at Earth to the size of
the Universe when the signals were emitted.  In other words,
distant clocks will be seen by an Earth-based observer to
run slow (since the Universe is expanding, a(ψem) < a(ψrec)).
Distant comoving observers would likewise observe Earth
clocks to run slow.  This is just the well-known redshift
effect.  The same thing is true for signals arriving at Earth
as the event horizon arrives:  they will simply be redshifted
(the two signals shown in Figure 6 have been chosen to
bracket the event horizon, shown as the dash-dots line).
Contrary to Starlight and Time, Earth observers will not
witness any rapid aging of the distant Universe as the event
horizon arrives at Earth.

Ingoing light trajectories in a bounded k = +1 cosmos
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Figure 6. Earth observations of distant clock behaviour are
unaffected by the event horizon of the bounded cosmos.
The time interval at a distant galaxy between the emission
of two signals leads to a time interval at Earth between the
reception of the two signals.  Starlight and Time  claims
that the reception time interval shrinks to zero for signals
arriving near the arrival of the event horizon, resulting in
an apparent speed-up of distant clocks when the event
horizon arrives at Earth.  As shown in the text, this is not
so.  Earth observers observe distant clocks to run slower
than Earth clocks throughout the expansion of the bounded
cosmos.

(28)

χem
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4.5 Is It Impossible for Light to Travel Inward
Inside the Matter Sphere Until the Event Horizon

Has Shrunk to the Centre?
Humphreys claims that light cannot travel inward in

the interior of the past event horizon of a �white hole�,
which is what he calls the expanding bounded matter
distribution discussed in Starlight and Time.46  This
assertion, coupled with the claim that the event horizon
did not arrive at Earth until Day Four of Genesis 1, plays a
minor role in the correlation of his cosmological proposal
to the Genesis 1 narrative:  it accounts for the absence of
visible starlight from distant galaxies on Earth prior to Day
Four.

Examination of the space-time diagrams we have been
using demonstrates that this assertion is untrue. Figure 4
shows the past event horizon (labelled �EH�) and an inward
radial light ray emitted from the edge of the matter sphere
at the beginning of the expansion (labelled �A�).  Clearly,
light rays from the edge of the matter as well as from regions
in the interior can and do travel inward and reach Earth
long before the event horizon arrives at Earth.  The light
ray �A� arrives at Earth at ψ = π/6, or τcomoving = 0.47 x 109

yr, while the event horizon does not arrive at Earth until ψ
= π/2, or τcomoving = 11.4 x 109 yr (where we have adopted
Humphreys� choice of amax = 4 x 1010 light years).

4.6 Conclusion:  Event Horizons
The physics of event horizons plays a prominent role

in the new cosmological model proposed in Starlight and
Time.  There it is claimed that the shrinking event horizon
of an expanding bounded Universe stops clocks as it passes
them, producing differential aging from centre to edge of
the matter distribution.  This effect is so powerful, it is
claimed, that the distant Universe ages billions of years
during the course of a single Earth day as the event horizon
arrives at Earth.  In addition, it is claimed that light cannot
travel inward to Earth until after the event horizon arrives
at Earth.

These assertions are false.  Humphreys� understanding
of the meaning and effects of event horizons is mistaken.
Starlight and Time gets the location and consequences
of the past event horizon of its model cosmology all wrong.
The past event horizon is simply a particular inward-
travelling light-like surface.  It has no consequences at all
for the passage of time on physical clocks in the interior of
a bounded Universe and no effect on the ability of light to
travel inward in the interior of a �white hole�.  Time passes
on physical clocks in a bounded Universe in exactly the
same way as it does in an unbounded Universe, and light
trajectories are likewise identical for the two cases.

5. OBSERVATIONAL REFUTATION OF
STARLIGHT AND TIME

In response to earlier analysis22 which pointed out
incompatibilities between the model proposed in Starlight

and Time and the observed properties of the Universe,
Humphreys has pleaded lack of time to develop this model
fully.20  In this section we show that no amount of
development can fix this model�s problems.  Observations
which thoroughly rule out young-Universe relativistic
cosmologies are already available.

5.1 The Observed Invariance of Extragalactic
Redshifts is Incompatible With Expansion as
Rapid as That Required by Young-Universe

Theory
It is easy to show that, in a Robertson-Walker

cosmology, a galaxy or QSO with cosmological redshift Z
will exhibit a present rate of change in its redshift of 6,47

dZ

d
Z H H

o
o em oτ

τ τ= +( ) − ( )( )1

where τ0 is the present cosmic time, H0 is the present value
of the Hubble parameter, τem(τ0) is the emission time for
light now arriving at Earth with redshift Z, and H(τem) is
the value of the Hubble parameter at that emission time.
The value of H0 has been measured to be close to
10-10 yr-1.  Any young-Universe cosmology which accepts
cosmic expansion as the cause of redshifts will require that
the past value of H(τ) be large in order to expand the
Universe to its present size in a few thousand years or less.
Humphreys� model, for example, expands the Universe
much of the way to its present size in a period of six days
or less.48,49  Other proposals have been made,50 and the
common feature of all these proposals is that H(τ) is very
large in the past.

The simplest physical model which can produce rapid
past expansion is the supposition of a large value of the
cosmological constant (this is proposed in Starlight and
Time, for example) or an equation of state with slowly
varying energy density (cosmic inflation51).  In this case,
the Hubble parameter is constant, Hlarge, and the cosmic
scale factor varies as a(τc) ∝ exp(τcHlarge).  We may obtain
a lower estimate for the value of Hlarge from the fact that
the largest redshift observed for discrete objects is at present
about Zmax = 5, implying that the Universe has expanded
by a factor of 1 + Zmax = 6 since the light from these objects
was emitted.  If we assume that the rapid expansion of the
Universe from one sixth its present size to its present size
took place during some Earth time period ∆τrapid, we can
obtain an expression for the value of the Hubble parameter
during this period

H
Z

l e
rapid rapid

arg
maxln .=

+( ) ≈
1 18

∆τ ∆τ

The length of the rapid expansion period, ∆τrapid, is a
free parameter of the theory.  A lower limit on the value of
Hlarge may be obtained from the fact that ∆τrapid cannot
exceed the age of the Universe.  For a young Universe
model with ∆τrapid < 6000yr, Hlarge > 3 x 10-4yr-1

 so that

(29)

(30)
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distant galaxies and QSOs should now exhibit redshift
change rates with magnitudes in excess of 3 x 10-4 per year:

dZ

d
yr

oτ
< − × − −3 10 4 1

This is just a lower limit on the magnitude of the predicted
present redshift change rate.  Starlight and Time calls for
a much larger expansion factor (about 1010 from the
primordial nucleosynthesis state52 in a much shorter time
(six days or less), which would imply a present dZ/dτ of ≈
�1400yr-1, a manifestly absurd prediction.

Astronomical observations (see the discussion in the
Supplement) rule out any changes as large as those of
equation (31), which in turn implies that the Universe
cannot have expanded to its present size as rapidly as
required by young-Universe theology.  Figure 7 shows a
series of measurements of dZ/dτ for a number of objects
with different redshifts.  The measurements are all
consistent with zero observed change (the changes implied
by the standard model, ≈ �10-10yr-1, are undetectibly small)
and are all incompatible with the large rates of change
required by any young-Universe model based on relativity.

It might appear possible, in principle, to wriggle out
of this argument by claiming, �the Universe did not expand
in a smooth fashion.  Rather, it expanded in a series of
jerks, between which it was static.  The observations which
show ∆Z/∆τ ≈ 0 only show that the Universe was not
expanding during the time period between the emission
times of those observations�.  In such a case, a(τ) would
have the form of a series of �steps� or �ramps� and H(τ)
would be a series of Dirac delta functions or �top-hat�
functions at the times corresponding to the �steps/ramps�.
This is an unsatisfactory response, however.  The redshift
change rate of equation (29) can be integrated to yield the
observed redshift of a source at arbitrary Earth time:

Z Z d Z H H emτ τ τ

τ
τ τ τ τ τ

2 1 1

2 1( ) ( )= + + ( )( ) ( ) − ( )( )[ ]∫ ' ' ' '

where the integration variable τ′ is the Earth observer time
between two measurements of the redshift of an object
(made at Earth times τ1 and τ2) and τem(τ′) is the emission
time for a signal which arrives at Earth at Earth time τ′.
Noting that the present Hubble parameter, H(τ′), is
essentially zero and assuming that H(τem(τ′)) is zero
everywhere except during the �steps/ramps�, the integral
simplifies to

Z Z Hem i l e i
i

N

τ τ2 1
1

( ) ( )
=

= − ∑∆τ , arg ,

where ∆τem,i is the length of the ith period of expansion (of
N total) which occurs between τem(τ1) and τem(τ2), and Hlarge,i
is the value of the Hubble parameter during that period.  If
the expansion is confined to a set of discrete steps or ramps,
the values of Hlarge,i must be correspondingly larger than
the smooth value Hlarge in order to expand the Universe to
its present size.  If any of these brief, but very rapid,

expansions occurs between the emission times of the first
and second light ray, there will be a difference in the
observed redshifts of the two rays.  In order to expand the
Universe six-fold, since the emission of light from Z = 5
quasars, it is necessary that the sum Σ∆τiHlarge,i over all the
discrete expansions occuring between the emission time
of Z = 5 light and the present must be at least 1.79.  Thus,
it is not possible to �hide� the expansion in a limited number
of very large jerks if there are many pairs of observations
Z1, Z2 for different objects at different redshifts which
indicate no redshift change.

In the astronomical literature there are thousands of
pairs of redshift observations of nearby and distant galaxies
and quasars separated by Earth time intervals of years to
decades.  The emission time intervals corresponding to the
observation dates of these measurements would densely
blanket a 6,000-year expansion history.  No statistically
significant redshift variation has been detected in the 80+
years of such measurements, ruling out the �jerky� 6,000-
year expansion scenario.  Most of these observations are
not sufficiently precise to rule out smooth expansion spread
over 6,000 years, but there are a few which can be used to
test for this. Figure 7 shows the highest quality (that is,
smallest uncertainty in dZ/dτ) data the authors have found
in the literature.6  These rule out the rapid expansion
scenario proposed by Humphreys and any smooth
expansion scenario for which the expansion time is less
than about 106 years.

(31)

(32)

(33)
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Figure 7. Observed and predicted redshift change rates for young-
Universe cosmologies and the standard model.  Curve A
is the prediction of Starlight and Time , assuming 1010-
fold expansion in six days.  Curve B is the lower limit
possible in a 6000-year expansion, given observed
redshifts as large as Z = 5.  Curves S1 and S2 are the
precitions of standard Big Bang models with k = 0, Ω0 = 1
and H0 = 100 and 40 km/s/Mpc, respectively.  The data
points show 2σ upper liits on the observed dZ/dτ for very
high precision measurements of several distant galaxies
and quasars.6  The observed limits on dZ/dτ are 100 to
1000 times too small to be compatible with the young-
Universe scenario.



Papers

192 CEN Tech. J., vol. 12, no. 2, 1998

Starlight and Time — Conner and Page

The measured upper limit on dZ/dτ sets an upper limit
on the value of Hlarge (assuming expansion spread out over
6,000 years, which makes Hlarge as small as it can be in the
young-Universe scenario):

H yrl earg < − −10 6 1

This limit on Hlarge in turn sets a lower limit on how long it
has taken the Universe to expand from one sixth its present
size, (that is, from the size it was when the light from Z = 5
QSOs was emitted) to its present size:

Hl e fold ansionarg exp ln .∆τ 6 6 1 79− = = 

implies that

∆τ 6
618 10− > ×fold ansion yr exp .

The quantity ∆τ6-fold expansion is also the light travel time from
a Z = 5 object.  Thus, the tiny upper limits on observed
redshift changes imply long expansion times and long light
travel times.

5.2 The Light Travel Time from Distant
Galaxies Places a Firm Upper Limit on the

Distance to Those Galaxies
The whole premise of Starlight and Time is that it is

possible to construct a locally homogeneous and isotropic
cosmological model in which light travels great distances
during the passage of short periods of time on Earth clocks.
It is straightforward to show that this is impossible � the
Earth time elapsed during the light travel gives a hard upper
bound on the distance to the object from which the light is
travelling.  Conversely, the distance to a distant object
places a hard lower bound on the amount of Earth time
which elapses as light travels from that object to Earth.
This fact can be shown by a short mathematical proof.  We
present a terse form of the proof below.  Readers interested
in more elaboration are referred to our supplementary paper.

5.2.1 The Dyer-Roeder Equation
In a Universe which is homogeneous and isotropic in

the mean, and in which a fraction α of the total matter
(assumed to be non-relativistic, an excellent approximation)
is distributed smoothly (a fraction (1 - α) is clumped into
galaxies, clusters, etc.), the angular diameter distance53 DA
obeys the differential equation

d D

d
Z DA

o A

2

2
53

2
1

λ
αΩ= − +( )

where λ is the affine parameter along the light trajectory
from the source to Earth54 (λ = 0 at the beginning of the
light trajectory at the source at redshift Z and is λEarth(Z) at
the end of the trajectory when it reaches Earth) and  Ω0 is
the present value of the cosmic density parameter.55  The
terminal conditions on equation 37 are DA(λEarth(Z)) = 0

and  dDA/dλλEarth(Z) = -c/H0. 6

The angular diameter distance of any object may be
determined by integrating equation (37) backwards from
λEarth(Z) to λ = 0 twice with respect to λ.  Short of doing
this for all Z, α, and Ω0, we can derive a general relation
between DA and λEarth(Z) as follows.  From equation (37),
it is obvious that DA(λ) curves toward the λ axis and from
the terminal conditions, DA(λ) intersects the λ axis with
slope -c/H0 (see Figure 8).  By definition, DA is a positive
quantity, so it follows that the angular diameter distance
of an object at redshift Z must obey the inequality

0
0

≤ ( ) ≤ ( )D Z
c

H
ZA Earthλ

The affine parameter λ is related to cosmic time τc by54

d

d

a

H a H
c

c

τ
λ τ

= ( ) ≥0

0 0

1

where the the inequality follows since the past scale factor
of the Universe a(τc) is smaller than the present scale factor
a0 in an expanding Universe.  Given that a(τc) < a0 for
cosmic times earlier than the present, it is obvious that

λ
τEarth

c
cZ

c

H a
c Z( ) ( ) ≤ ( )

0

∆τ

where ∆τc(Z) is the cosmic time elapsed during light travel
from an object with redshift Z. Inequalities (38) and (40)
together imply that

D Z

c
ZA

c
( ) ≤ ( )∆τ

We have already shown that the elapsed cosmic time ∆τc
is identical, to within a few parts in 106, to the elapsed

(34)

(35)

(36)

(37)

DA

DA(Z)

0

c
H Earth Z
�

λ b g

slope = -c/H0

0 λEarth(Z) λ

Figure 8. Diagram illustrating how the Dyer-Roeder equation
(equation (37)) provides an upper limit on the angular
diameter distance in terms of the affine parameter λ.  From
the diagram, it is obvious that DA(Z) < λEarth(Z)c/H0.

(38)

(39)

(40)

(41)



CEN Tech. J., vol. 12, no. 2, 1998 193

PapersStarlight and Time — Conner and Page

Earth time, so that without loss of accuracy we may rewrite
this as

D Z

c
ZA

Earth
( ) ≤ ( )∆τ

where ∆τEarth(Z) is the Earth proper time elapsed during
light travel from an object with redshift Z.  Thus, in an
arbitrary on-average locally homogeneous and isotropic
expanding Universe, the angular diameter distance provides
an absolute lower bound to the light travel time as measured
by physical clocks on Earth.

Angular diameter distances are difficult to measure,
but are related by DA(Z) = DL(Z)/(1+Z)2 to a more easily
measured distance quantity called the luminosity distance,
DL.56  Based on large numbers of measured luminosity
distances and confirmed with a much smaller number of
measured angular diameter distances, it is found that the
angular diameter distance to objects with redshifts much
less than unity is

D Z Z
c

H
Z light yearsA( ) = = ×

0

915 10   

where we have taken H0 = 64 km/s/Mpc.57,58  The light
travel time from low redshifts objects is consequently

∆τ Earth Z Z years( ) ≥ ×15 109

So, for example, the light travel time of an object with
redshift Z = 0.1 must exceed 1.5 billion years.

The converse of this theorem is that, if the light-travel
time from an object must be small, the angular diameter
distance of that object cannot be large:  DA(Z) < c∆τEarth(Z).
This is an observable consequence of the Starlight and
Time model:  there should be no visible objects in the
Universe with an angular diameter distance of greater than
6,000 light years.  This is a preposterous proposition, and
one which Humphreys himself rejects.59

This argument is strictly valid only if the visible
Universe is homogeneous and isotropic in the mean, one
of the key assumptions of standard cosmology theory and
one shared by Starlight and Time.  However, it is possible
to generalise this argument to an arbitrary inhomogeneous
Universe (provided only that the Universe undergoes
expansion in the past).  A proof of this is presented in the
Supplement.

5.3 Conclusion:  Observable Implications of
Starlight and Time

The recent-creation, rapid expansion approach to
cosmology of Starlight and Time has two profound
observable implications not recognised in that book.  The
first of these is that extragalactic objects should exhibit
large annual changes in redshift.  The second is that no
visible object in the Universe should have an angular
diameter distance greater than 6,000 light years.  Both of
these predictions are found to be false.  No significant

changes in redshift of extragalactic objects have been
observed in the almost 100 years of such measurements.
The most precise measured upper limits on redshift changes
imply that the Universe has been expanding for at least
one million years of Earth time, not the 6,000 or less
required by Starlight and Time.  No extragalactic angular
diameter distances as small as 6,000 light years have ever
been observed.  Indeed, the centre of the Milky Way galaxy
is about four times this distance from Earth.60  These results
apply, regardless of the details of the expansion.  Thus, no
adjustment of the expansion history can avoid the force of
these consequences.  These two phenomena rule out all
possible variations of young-Earth relativistic cosmology
which possess the properties of past expansion and large
present size, properties which Humphreys concedes do
apply to the real Universe.

6. CONCLUSION

The arguments of Starlight and Time are profoundly
flawed and by no means offer a solution to the light-travel-
time problem.  The central premise of the book, that the
long time-scale implications of standard cosmology theory
are a consequence of the historically unbounded character
of the standard model, is mistaken;  in fact, the presence or
absence of boundaries is irrelevant to the standard model,
provided that the observable Universe is approximately
homogeneous and isotropic.  The appeal to Schwarzschild
coordinate time is ill-conceived and avoids the central
question of which clocks are relevant and how much time
elapses on them as the Universe expands;  the relevant
clocks in a bounded Universe, as in an unbounded one, are
comoving clocks, which remain synchronised to cosmic
time throughout the expansion of the Universe.  The claim
of profound time distortions accompanying the passage of
a past event horizon in an expanding bounded cosmos is
mistaken;  in fact, the past event horizon of an expanding
bounded Universe produces no effects detectible by
observers inside the Universe.  The rapid-expansion
hypothesis required to bring the Universe to its present
size in only a few thousand years leads to observable
consequences, such as rapid changes in redshift and a very
low upper limit on the observed distance to extragalactic
objects, which clearly do not occur in the real universe;
conversely, the observed staticity of redshifts and the
observed large distances of extragalactic objects imply that
the Universe has been expanding and light from distant
galaxies has been travelling toward Earth for spans of time
far longer than the brief time-scale permitted by young-
Universe interpretation of the Bible.

The bounded cosmology approach of Starlight and
Time leads to cosmological models which are identical to
the standard Big Bang model in their time-scale
implications.  It should not be promoted in the Church as a
scientifically sound young-Universe alternative to Big Bang
cosmology.

(43)

(44)

(42)
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